
AD-A244 016

DTIC
SELECTE
JAN 0, SZu

SDWSRIBUTION STATOM A 0D
Approved for publc Memo)Dmutbudon Unliftd

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

.AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

09 1 2 127

AFIT GCS/ENG/91D-13

ESTABLISHING A METHODOLOGY FOR EVALUATING
AND SELECTING COMPUTER AIDED SOFTWARE

ENGINEERING TOOLS FOR A DEFINED SOFTWARE
ENGINEERING ENVIRONMENT AT THE AIR FORCE

INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING

THESIS

Jody L Mattingly, Captain, USAF

AFIT GCS/ENG/91D-13

Approved for public release; distribution unlimited

"k

AFIT GCS/ENG/91D-13

Establishing a Methodology for Evaluating and Selecting

Computer Aided Software Engineering Tools for a Defined

Software Engineering Environment at the Air Force

Institute of Technology School of Engineering

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Computer Science in Computer Systems

Aocesslon For

Jody L. Mattingly DTIC TAB
Unannou.nced

Captain, USAF Jutft tc ion-

D.istrlbuttor/ _

Availability Cod"G

December, 1991 v omcao
poial

Approved for public release; distribution unlimited

I

F

Preface

The purpose of this thesis is to identify the software

engineering environment (SEE) as it exists at the Air Force

Institute of Technology School of Engineering, determine the

software process model employed and the software development

methods presented as part of the curriculum, and then, based

on this information, develop criteria upon which to evaluate

computer aided software engineering (CASE) tools being

considered for integration into the SEE, evaluate these CASE

tools using this criteria, analyze the results and make

recommendations concerning the SEE and CASE tools based on

this analysis.

I extend my gratitude to several people who supported me

during this effort. I thank my thesis advisor, Lt Col

Patricia Lawlis for her guidance and expertise in the area of

SEEs. I also acknowledge the support provided me by my thesis

committee, Maj Paul Bailor and Maj Jim Howatt. I greatly

appreciated their insights and suggestions. I would also like

to thank Maj Roger Koble, Capt Mike Dedolph, Capt Dawn Guido,

and Capt Karen Harrower for their assistance with the CASE

tool evaluations. I thank Capt Dean Campbell, Mr. Dan Zambon

and Mr. Doug Burkholder for their assistance concerning the

computer systems which hosted the CASE tools under

consideration. Most especially, I would like to express my

gratitude to my wife, Karen, for the patience, support,

encouragement, and understanding she provided during this

effort.

ii

Table of Contents

Page

Preface ii

List of Figures v

List of Tables vi

Acronymsvii

Abstract ix

I. Introduction 1-1

Problem Definition 1-2
Research Objectives 1-2
Research Questions1-3
Approach1-4
Materials and Equipment Required1-6
Scope1-8
Introduction to Remainder of the Thesis 1-8

II. Literature Review2-1

Description of a SEE2-1
Characteristics of a SEE 2-2
Benefits of Establishing a SEE2-3
SEE Types2-5
SEE Architectures 2-7
Methodologies for Evaluating a SEE Z-11
CASE Definition2-12
Integrated CASE Environments 2-13
Types and Categories of CASE Tools2-16
Toolkit Vs. Workbench 2-18
Benefits of CASE Tools 2-18
Potential Pitfalls of CASE Tools2-21
The Software Process2-24
CASE Tool Criteria2-25
A Process for Evaluating CASE Tools2-31
Summary2-34

III. The Software Engineering Environment 3-1

The SEE at AFIT3-1
CASE Tool Classification 3-7
Criteria to Evaluate CASE Tool Sets3-8
Evaluation Approach 3-9

iii

I

Page

Methodology for Software Evaluation and
Selection3-12
Summary3-14

IV. The Evaluation Process4-1

Distribution of Evaluations4-1
Test Cases 4-3
Problems Encountered4-4
Summary4-9

V. Results and Discussion5-1

Evaluations Results5-1
Anderson's Methodology5-3
Analysis of Individual Criteria 5-20
Comparison of Tool Sets5-24
Summary 5-25

VI. Suggestions and Recommendations6-1

Concerning the SEE6-1
Concerning Anderson's Methodology 6-4
Concerning the Evaluations6-6
Summary6-7

Appendix A: Description of Evaluated CASE Tools A.1

Appendix B: Criteria descriptionB.1

Appendix C: Weighted Criteria for Evaluating Case Tools C.1

Appendix D: Evaluations for CASE Tools D.1

Appendix E: Test Cases for CASE Tool Evaluations E.1

Appendix F: CASE Tool Evaluation ResultsF.1

Appendix G: CASE Tool Generated ReportsG.1

BibliographyBIB.l

Vita VIT.I

iv

List of Figures

Figure Page

2.1. SEE Architecture2-9

2.2. APSE Architecture 2-10

2.3. Typical CASE Environment 2-14

2.4. Dimensions of Software Engineering Which Evolve
to an ICASE Environment2-15

3.1. AFIT Distributed SEE Architecture3-2

5.1. Matrix for Analyzing the Performance Ratings of
CASE Tools (Novice)5-3

5.2. Matrix for Analysing the Performance Ratings of
CASE Tools (Expert)5-4

5.3. Matrix F Used to Determine the Frequency of
Important Ratings 5-10

5.4. Matrix D Used to Determine Outliers5-12

5.5. Matrix M Used to Determine Overall Magnitude of
Superiority 5-13

5.6. Matrix P Used to Rank CASE Tool Sets5-15

5.7. Matrix F Used to Determine the Frequency of
Important Ratings (Novice)5-18

5.8. Matrix D used to Determine Outliers (Novice) . . 5-18

5.9. Matrix M Used to Determine Overall Magnitude
of Superiority (Novice)5-19

5-10. Matrix P used to Rank CASE Tool Sets (Novice) 5-20

V

List of Tables

Table Page

2.1. Major Misconceptions Concerning CASE and ICASE 2-23

5.1. Criteria Numbering Scheme for Novice Evaluations 5-5

5.2. Criteria Numbering Scheme for Expert Evaluations 5-6

5.3. Sets of Superior or Equivalent Criteria Ratings 5-8

5.4. Magnitude of Superior Criteria Rating Sets . . . 5-8

5.5. Maximum Differences Between Compared Criteria 5-9

5.6. Sets of Superior or Equivalent Ratings (Novice) 5-17

5.7. Magnitude of Superior Rating Sets (Novice) 5-17

5.8. Maximum Criteria Differences 5-17

vi

Acronyms

AFIT - Air Force Institute of Technology.

APSE - Ada Programming Support Environment.

CASE - Computer Aided Software Engineering.

CDD - Common Data Dictionary.

CMS - Code Management System.

DEC - Digital Equipment Corporation.

DTM - DEC Test Manager.

GKS - Graphical Kernel System.

IBM - International Business Machines.

ICASE - Integrated Computer Aided Software Engineering.

IPSE - Integrated Program Support Environment.

KAPSE - Kernel Ada Programming Support Environment.

LSE - Language Sensitive Editor.

MAPSE - Minimal Ada Programming Support Environment.

MMS - Module Management System.

OS - Operating System.

PC - Personal Computer.

PCA - Performance and Coverage Analyzer.

PCE - Professional Continuing Education.

PHIGS - Programmer's Hierarchical Interactive Graphics System.

POSE - Picture Oriented Software Engineering.

RDF - Rational Design Facility.

SEE - Software Engineering Environment.

vii

SQL - Structured Query Language.

VAX - Virtual Address Extension.

VMS - Virtual Memory System.

viii

AFIT GCS/ENG/91D-13

Abstract

f This thesis identifies the software engineering

environment (SEE) as it exists at the Air Force Institute of

Technology (AFIT) School of Engineering. It also describes

the software process model employed and the software

development methods presented as part of the curriculum.

Based on this information, criteria was established to

evaluate computer aided software engineering (CASE) tools

being considered for integration into the SEE. Each criterion

was weighted to indicate its importance when selecting CASE

tools. The criteria were further used to establish a

methodology to be used to evaluate and select the CASE tools

under consideration as well as future tool candidates.

ix

I.Introduction

Recently, the Air Force Institute of Technology (AFIT)

had a number of Computer Aided Software Engineering (CASE)

tool sets available which required evaluation to determine

their potential use, if any, at AFIT. Three particul,: CASE

tools were being considered. Neither staff nor students were

typically familiar with any of these tools, although the

various analysis and design methodologies the tools

incorporate are taught as part of the curriculum and should be

familiar to both staff and students.

A coordinated and useable Software Engineering Environment

(SEE) that is appropriate for AFIT needs in the area of

software development had to first be defined. An established

SEE would enhance the productivity of those who work with the

environment. The defined environment was based on existing

and applicable AFIT hardware, as well as software which

executes on these systems. The SEE should be expandable, and

provide good software engineering support.

Once the environment was defined, CASE tools with the

potential to be an integral part of the SEE were identified.

The criteria upon which to evaluate these CASE tools was then

established, followed by an evaluation and analysis of the

tools. After this had been accomplished, the SEE (or a

prototype) was built.

i-i

Problem Definition

A SEE which supports software development activities at

AFIT needed to be defined so that it could be determined how

CASE tools under consideration for use at AFIT might be

incorporated into this environment. An investigation of

existing methods and measurements developed for the purpose of

evaluating and selecting CASE tools was required, and from

this collection of information, a determination was made of

the appropriate criteria upon which to evaluate CASE tools for

this environment.

Research Objectives

The primary objectives of this thesis were as follows:

1. To define a SEE in which the proposed CASE tools

would be incorporated.

2. To establish criteria with which to evaluate the

three CASE tools under consideration based on the SEE and the

software development methodologies presented at AFIT.

3. To determine how each CASE tool supported the chosen

criteria.

4. To investigate existing methods and measurements used

to evaluate CASE tools.

5. To determine how the CASE tools compared to each

other using the chosen evaluation method.

6. To determine the usefulness of each to AFIT staff and

students, and if any tool should be incorporated in the SEE.

1-2

Research Questions

Five key questions were addressed by this thesis:

1. 'How can a software engineering environment at AFIT

be defined?' This question pertained to the first two

objectives and needed to be answered before all others. A

thorough understanding of the SEE aided in the determination

of the role of CASE tools in that environment.

2. 'What criteria should be used to evaluate the CASE

tools under consideration?' This question related to the

second objective of the thesis. There are a great number of

criteria against which CASE tools can be evaluated and

selected. The criteria chosen were the most important which

apply to the problem at hand, while less important criteria

were disregarded.

3. 'How do the CASE tools under consideration meet the

established criteria for each?' This question corresponds to

Objective 3. The criteria for each tool was not necessarily

the same criteria as established for the other tools, although

they were similar. Each tool was judged first by the criteria

established for that particular tool.

4. 'How do the tools under consideration compare, if at

all, to each other?' This question relates to the fourth and

fifth objectives. The tools were examined to determine if the

capabilities provided by each are similar to the other.

Certainly, if the tools provided the same or very similar

capabilities, a determination would be made as to which tool

should be chosen over all others. On the other hand, it may

1-3

be determined that each tool provides enough unique

capabilities that all tools will be chosen for use at AFIT.

In order to make these types of determinations, a methodology

for evaluating and selecting CASE tools was first decided

upon.

5. 'Do these tools belong in the software engineering

environment at AFIT, and if so, how would these tools be

incorporated into the defined environment?' This question

corresponds to Objective 6. The possibility existed that

after evaluation of the CASE tools, it would be determined

that one or more would not be useful at AFIT. Any tool that

was determined to be useful would have to be examined further

to determine how it would be integrated into the SEE.

Approach

The first step in the thesis research was to determine

how to define the SEE in which the proposed CASE tools would

exist. This required a literature search on the topic of

Software Environments and a thorough study of the accumulated

material. Once this research was complete, a SEE for AFIT, of

which the CASE tools were being considered as part, was

defined.

Next, a survey of literature related to the topic of CASE

tool evaluation was required. Based on this research, as well

as consultations with AFIT staff who are directly concerned

with the evaluation of the CASE tools, establishment of the

criteria upon which to evaluate these tools was accomplished.

1-4

Then, an initial examination of all the tools was performed to

provide familiarity with both the tools and the environments

they execute in. The tools were then evaluated, beginning

with the least complicated as a way of becoming familiar with

the evaluation process. As the tools were evaluated,

personnel experienced in CASE tool evaluation were conferred

with for their expertise. For each tool, a test problem was

established to assist in the evaluation process. The CASE

tools that were evaluated were three sets which are available

at AFIT, Picture Oriented Software Engineering (POSE),

DECdesign, and ObjectMaker.

POSE, developed by Computer System Advisors, provides the

user the ability to use structured analysis and design

techniques to develop a software project. A limited

evaluation on this CASE tool had been accomplished prior to

this thesis for the purpose of determining its potential

applications for Object Oriented Analysis and Design. As part

of the thesis, a more comprehensive evaluation of POSE was

performed, based on the criteria established as a result of

the research on CASE evaluation methods. POSE is currently

resident on the AFIT personal computer (PC) network.

The second tool set evaluated was DECdesign, created and

distributed by Digital Equipment Corporation (DEC). DECdesign

executes in a VAX environment and also provides the user the

ability to use structured analysis and design techniques. The

tool is currently loaded on a local VAX.

1-5

The third tool set evaluated was ObjectMaker, developed

by Mark V Systems. This tool set provides the capabilities

for structured analysis and design, object oriented analysis

and design, generation of Ada and C code based on previously

created designs, and reverse engineering. The tool set will

execute in a PC, work station, or main frame environment. The

tool is currently loaded on the AFIT PC network and is

accessible using Zenith 248 machines.

Based upon established criteria for measuring and

evaluating these tools, as well as input from AFIT staff as to

how these tools would best fit into the AFIT academic

environment, a determination was made if any or all of the

CASE tools would be useful by both AFIT staff and students.

This determination was also based upon the experiences and

opinions of students (including this researcher) and staff who

have tested the tool. Final analysis includes recommendations

for further studies.

Materials and Equipment Required

Literature on defining software environments, as well as

the evaluation of CASE tools, was required. This literature

was obtained from the AFIT library. Other local university

libraries were referenced, including Wright State University

and the University of Dayton.

Documentation on the CASE tools under consideration was

required. This included user's manuals, installation guides,

tutorials, etc.

1-6

A VAX was required for the implementation of the

DECdesign CASE tool, as well as access to the VAX (an

account), and a terminal that would support DECdesign's

graphic capabilities. Currently, DECdesign is installed on

the local VAX and is accessible via the Digital work station

in the AFIT graphics lab.

For the POSE tool, an IBM PC compatible environment, and

access to the PC were required. When POSE was installed on

the AFIT network, memory problems existed with the 286 based

PCs. These problems prohibited the execution of some of the

modules provided by POSE. These memory problems were

rectified with the introduction of 386 based PCs into the

computer inventory at AFIT.

ObjectMaker required a PC environment with Microsoft

Windows version 3.0 and a mouse (or its equivalent). The

demonstration copy was loaded on a Zenith 248. Because of the

limited memory available on this machine, tool execution time

was extremely slow.

Printers and/or plotters had to also be available to

allow for hard copy output of graphical objects and documents

created by the CASE tools.

Documentation on the systems used at AFIT was required as

part of the evaluation of the SEE.

Finally, the CASE tools themselves needed to be available

and resident in the AFIT software environment. Sample

diskettes would not suffice for evaluation purposes. The

tools needed to be available for a thorough and comprehensive

1-7

evaluation. POSE and DECdesign were available for the

duration of this research. However, ObjectMaker was very new

and available for only a short time at the very end of the

research effort. The researcher was only able to test some

design capabilities of ObjectMaker and conduct a limited

evaluation.

Scope

The purpose of the research on SEEs was to define the

environment in which the CASE tools under consideration might

reside. The SEE research was therefore as detailed as time

permitted and complete enough so that the roles of the CASE

tools in relationship to this environment could be defined.

The evaluation and building of a SEE at AFIT had the potential

to be a thesis topic in itself. The main thrust of this

thesis was the evaluation of the three CASE tools.

The criteria upon which the CASE tools were be evaluated,

as well as the test case that was used, also had to be

limited. The test case was designed so that it tested the

features of the tools that would be of most interest to the

AFIT community. Therefore, an exhaustive evaluation of the

tools was not feasible or necessary.

Introduction to Remainder of the Thesis

Chapter 2 documents the results of the literature reviews

and provides background material related to this

thesis. The emphasis is on CASE tool evaluation methods and

criteria for measuring tools.

1-8

Chapter 3 outlines the solution to the problem being

examined. A detailed description of the AFIT SEE, as well as

the criteria upon which the CASE tools were evaluated, the

steps required to implement the evaluations, a description of

the test cases used, and an indication of the resources/tools

needed to solve the problem are provided.

Chapter 4 describes the actual implementation of the

evaluations. Descriptions of the CASE tool evaluations, the

evaluators, and the test cases used are provided.

Chapter 5 includes the analysis of the evaluations.

Results of the evaluations (i.e., results of implementing a

methodology for evaluating and selecting CASE tools) and their

meaning are discussed.

Chapter 6 includes any conclusions about the thesis

effort as well as recommendations for further study.

The appendices of the thesis contain a general

description of the three CASE tools being evaluated, examples

of the evaluations used, a listing of the criteria established

to evaluate the CASE tools, any reports and any charts or

graphics generated by the CASE tools.

1-9

II Literature Review

This chapter begins with an examination of SEEs. Various

descriptions of a SEE are examined to determine a SEE's

primary attributes. Benefits of establishing a SEE are then

presented. Finally, various SEE types are presented, as well

as software environment architectures.

The second part of this chapter deals with establishing

criteria for evaluating CASE tools to be used in a SEE.

First, a definition of CASE is presented. Next, CASE tool

environments, types, and characteristics are examined.

Finally, the benefits and potential pitfalls of utilizing CASE

tools are considered, followed by an examination of criteria

used to evaluate CASE tools.

2.1 Description of a SEE

Various authors have provided descriptions of what a SEE

is and what a SEE should provide. Some of these descriptions

are:

A SEE assists the accomplishment of software engineering
through sets of computer facilities, integrated software
tools, and uniform engineering procedures. (61:384)

A software engineering environment surrounds the user
with tools needed to systematically develop and maintain
software. (28:1)

An environment that augments or automates all the
activities comprising the software development cycle,
including programming-in-the-large tasks such as
configuration management, and programming-in-the-many
tasks, such as team management an environment that
supports large scale long term maintenance as well.
(14:18)

2-1

The process, methods, and automation required to produce a
software system. (9:38)

From the various descriptions encountered, key

characteristics of a SEE can be identified. To acquire a

better understanding of what a SEE is requires an examination

of these characteristics, as well as the various types of SEEs

and their architectures.

2.2 Characteristics of a SEE

In order for a SEE to provide adequate support for any

software system engineering effort, it should exhibit the

following characteristics:

1. Adaptability. A SEE should have the capability to

adapt to changing project characteristics, behaviors and

requirements (50:691; 60:39). A SEE should not be so rigid in

its design as to limit its breadth of applications.

2. Level of automation. This pertains to the amount and

types of automated assistance provided to the SEE user. A

high degree of automation is desired for software engineering

activities that, when done manually, are time consuming,

tedious, or difficult to accomplish (50:691).

3. Level of integration. This refers to how well the

different components of a SEE interact, and how this

interaction appears to the user. When using the various SEE

facilities, the user should notice little change in the look

and feel among these facilities. This points to the

requirement for a central data repository that all the SEE

components would interact with (8:322; 49:39; 50:691; 60:39).

2-2

4. Reusability of internal components. SEE generated

components of a software engineering effort should be

available for reuse in the effort, or in other software

engineering efforts. This characteristic also indicates the

requirement for a central data repository (49:38).

5. Usability. The SEE should be user friendly and should

include an easy to understand user interface. It should be

easy for the intended users of a SEE to learn how to use it.

A SEE should incorporate software engineering methodologies

that are standard in practice, and should support the needs of

project personnel (49:38; 50:690).

6. Utility. This concerns how the SEE can be utilized by

the variety of users involved in the various software system

life cycle activities. This includes programmers, designers,

and managers. Utility also applies to software system life

cycle activities. A SEE should support all life cycle

activities (8:322; 49:37; 50:690).

7. Value. The cost of utilizing a SEE in time and money

should offset the effort spent in learning and using the SEE.

Increased savings in time and money should be evident when

using a SEE as opposed to a manual effort (50:691).

2.3 Benefits of Establishing a SEE

The SEE characteristic of value, mentioned above, refers

to the cost saving capabilities of a SEE when compared to a

manual software system engineering effort. Besides these

2-3

benefits, a SEE provides other advantages that make it

desirable to establish.

A SEE encourages good software engineering practice, and

increases both the general quality of software systems and the

productivity of software related personnel (50:691). A SEE

also provides management and customer visibility into a

project's progress and insights into the properties of the

project's eventual results (9:35; 50:689).

In a study conducted in the early 1980s, Barry Boehm

analyzed 63 software development projects with varying

applications. Boehm found that the use of a SEE can reduce a

development efforts cost by 28-41% (28:2; 33:56).

A 1980 report of the Government Accounting Office (GAO)

indicates additional benefits. The GAO endorsed the use of

software development automation and concluded that software

tools (found in software engineering environments) can offer

the following benefits (28:2):

1. Better management control of computer software
development, operation, maintenance, and conversion.

2. Lower costs for operation, maintenance, and
conversion.

3. A feasible means of inspecting both contractor
developed and in-house-developed computer software for
such quality indications as conformance to standards and
thoroughness of testing.

In summary, the primary benefits of establishing a SEE

are that it provides a reduction in cost, development time,

and effort over the system life cycle, and an increase in

2-4

r

productivity of personnel and quality of the software system

produced.

2.4 SEE Types

Before examining some of the various SEE types it is

important to point out that various authors differ in their

views of the correlation, if any, between a SEE, a software

development environment and a programming environment.

Steubing, for example, contends that the latter two

environments are concerned primarily with the code and test

activity of a software system life cycle and deal specifically

with software. He states that a SEE is different in that it

provides support over the entire life cycle, including aspects

other than software (61:388). Others support a different

view, stating that a software development environment and a

SEE are the same environment (14:18). The different

categories of environments presented in this thesis were

determined by various authors with differing opinions on how

software environments should be classified.

There are few, if any, existing SEEs that support all

software engineering activities in a software system life

cycle (26:14). Instead, since activities that occur in

earlier stages of the life cycle are different from those that

occur later, a SEE tends to concentrate on one stage or the

other (28:5). This results in various environment types that

can be grouped into six basic categories: framing

environments, method based environments, structure oriented

2-5

,!

environments, programming environments, toolkit environments,

and general environments (3:2; 14:18; 28:5). Any particular

environment may fall into a number of the presented

categories.

Framing Environments. This type of environment is

concerned with the earlier stages of a software system life

cycle. The name framing is derived from the fact that the

system is concerned with the stage of the life cycle where

requirements and design frame the system (14:18; 28:6).

Method Based Environments. Method based environments

support a specific method for developing software. They

support particular development methods and the management of

the development process (3:4). Examples of method based

environments are Excelerator, CASE 2000, and Cadre Teamwork.

Structure Oriented Environments. This type of

environment is "constructed around a central structure editor

for manipulating structures such as abstract syntax trees"

(3:3). Structure oriented environments are language

dependent, support direct manipulation and multiple views of

a program structure, and support only the coding phase of the

software system life cycle.

Programming Environments. Programming environments, also

known as language centered environments, are built around a

specific language, and as such, provide features such as tool

sets that are oriented toward that language (3:3; 14:18;

2-6

28:6). This type of environment is primarily concerned with

the latter stages of the life cycle. Example of this type of

environment are the Ada Programming Support Environment (APSE)

(34:16; 15:1), and the Rational environment for Ada (3:3).

Toolkit Environments. This environment provides a

collection of tools that support programming-in-the-large

tasks such as configuration management and version control

(14:18). It is similar to a programming environment in that

it supports the latter stages of the software development

process (3:4), but it differs in that it is programming

language independent.

General Environments. This type of environment supports

all phases of the life cycle, and is independent of a specific

programming language. General environments support

programming-in-the-large and provide both basic tools, such as

compilers and editors, as well as CASE tools (14:18; 28:7).

UNIX and VMS are examples of this type of environment. An

Integrated Programming Support Environment (IPSE) is a general

environment (35:52; 42:1) that also supports the management of

the software process (3:2).

2.5 SEE Architectures

A software environment architecture refers to the

components of that system, their interrelationships, and

interactions. An architecture can display the characteristics

of a combination of four basic types of architectures:

2-7

control-centric, data-centric, network, and virtual machine

(50:691). Most environments will exhibit a mixture of these

architecture attributes.

Control-centric architectures organize components in

terms of flow of control among the components, with the

internal supervising subsystem at the heart of the

environment. The core of a data-centric architecture is the

data repository around which components are organized in terms

of data flow relations with the repository. Network

architectures utilize message communication between a network

of processes. Finally, virtual machine architectures, such as

an APSE, organize components of the environment into

implementation support layers, with each lower level

supporting the implementation of the higher ones (34:17;

15:1). This thesis will concentrate on this type of

architecture.

A virtual machine architecture is composed of four

layers: the hardware and native operating system layer, the

environment support layer, the tool/capability layer, and the

environment adaptation and project user support layer (34:14;

50:692).

The hardware and native operating system layer is the

lowest layer of the architecture and is comprised of the

underlying hardware and native operating system.

The environment support layer provides a set of commonly

used facilities. It is composed of the virtual operating

2-8

system, an object management system, a user interface

management system, and an environment management system.

The tool/capability layer is composed of functional tools

and capabilities, tool building tools, and integration

mechanisms. These components provide the environment's

functionality.

The environment adaption and project user support layer

is the highest layer in the architecture. It consists of

adaption support mechanisms and project user support

capabilities, and is oriented toward the needs of environment

adapters and project users. An example of this architecture

is given in Figure 2.1.

Enm mwa
ftP Uaw SW4PWu LAMr

TOCMM La"W

Emkw-' LpM

Figure 2.1 SEE Architecture (50:693)

2-9

One example of a SEE is an APSE. An APSE is a

programming language specific SEE, as indicated by the title.

The purpose of an APSE is "to support the development and

maintenance of Ada applications software throughout its life

cycle, with particular emphasis on software for embedded

computer applications." (15:1)

An APSE architecture essentially provides the same

services as the virtual architecture presented by Penedo, but

the layers are labeled differently. The three layers are the

kernel Ada program support environment (KAPSE), the minimal

Ada program support environment (MAPSE), and the Ada program

support environment (APSE)(8:323; 34:17; 15:1). An example

of this "onion skin" architecture is given in Figure 2.2

Figure 2.2 APSE Architecture (15:1)

2-10

The KAPSE contains all system and implementation

dependencies, and is comparable to the hardware and native

operating system layer of Figure 2.1. The MAPSE provides a

minimal set of tools necessary for the development and support

of Ada programs, and is roughly comparable to the

tool/capability layer of the virtual architecture. The

standard interface in Figure 2.2 is roughly comparable to the

environment support layer which simplifies the construction of

the components in the tool layer of the virtual architecture

by providing a set of commonly needed facilities. The APSE

outer layer of Figure 2.2 is roughly comparable to the

environment adaption and project user support layer. The APSE

provides the capabilities for process management and project

specific design and management.

2.6 Methodologies for Evaluating a SEE

Numerous methodologies can be used when evaluating a SEE

(17:31; 64:199). Weiderman and others define a methodology

for evaluating environments, for the purpose of "adding a

degree of rigor and standardization to the process of

evaluating environments" (64:199). Without an evaluation

methodology, most environment evaluations are ad hoc at best.

They stress that any methodology should be based on user

activities, independent of any actual environment,

experimentally based, should test a core of functionality, and

should be evolutionary and extensive. The 6 phases of their

proposed methodology (64:201) a:e as follows:

2-11

Phase 1 - Identify and classify software development
activities.

Phase 2 - Establish evaluation criteria.

Phase 3 - Develop generic experiments.

Phase 4 - Develop environment specific experiments.

Phase 5 - Execute environment specific experiments.

Phase 6 - Analyze the results.

The scope of this thesis prohibits a full implementation

of this methodology. Phase 1 activities, however, can be

identified as a way to better understand the SEE and the CASE

tools that may be required as part of that environment.

2.7 CASE Definition

As previously discussed, one of the characteristics that

should be exhibited by a SEE is that it automates the

activities of a software system life cycle. Automation can be

accomplished through the use of various software tools known

as CASE tools. CASE is defined as follows:

CASE can be viewed as an environment that supports the
software engineering process. (47:1102)

CASE is the development and effective use of appropriate
management approaches, systematic procedures and methods,
and automated tools that permit teams of software
engineers to produce software that 1) meets business and
systems requirements; 2) is completed with a predictable
schedule; 3) is available within budget guidelines; 4)
allows for easy maintenance and enhancement. (57:376)

(CASE) technology is the industrialization of software
development. It is an integrating technology which will
pull together and focus the many methods, techniques, and
tools software developers are using or will be using in
the future. (44:373)

2-12

Many authors describe CASE as the automation of the

entire software life cycle with a set of integrated tools

(22:190; 46:33). Sharon further describes CASE as a term that

applies to all methods, procedures, techniques and tools used

to engineer software (57:376).

A comparison of the definitions of a SEE and CASE

environments indicates the two are very similar, if not

synonymous. In particular, three aspects of an environment

are common in most of these definitions: a software process,

a method, and automated tools. The remainder of the chapter

will deal mostly with the third aspect, automated tools, in

particular, CASE tools.

2.8 Integrated CASE Environments

Before the discussion of the various types of CASE tools

can begin, a highly desirable feature of a CASE or SEE

environment needs to be considered. An environment, such as

the CASE environment presented in Figure 2.3, exists in most

software development organizations in varying forms.

What is usually lacking among tools used in this type of

environment as well as in the environment itself is

integration (57:377). Penedo and Riddle's virtual

architecture, Figure 2.1, compensates for this deficiency by

incorporating integration mechanisms in the tool capability

layer. When new CASE tools are being evaluated, consideration

has to be given to the efforts on current manual techniques

and existing tools to determine the level of integration that

2-13

A Complete Environment For Software Design

Automation

Figure 2".3 Typical CASE Environment (57:376)

exists. Consideration must also be given as to how well the

new tools will be integrated. Figure 2.4 displays the

dimensions of software engineering which evolve into

integrated CASE environments.

Forte points out that:

while individual CASE tools each contribute to improved
quality and productivity in software engineering, the
promise of CASE lies in the potential to integrate many
tools into an integrated environment. (18:5)

2-14

Thno Den Sfuxd-"

Th* e~lwaTpnve Tmidoga
Diresi P2. D n i * To.ls

The tnaqaw n- Ppcet and P.m

The SsLMMeigne.i

Figure 2.4 Dimensions ofnoftar EniooinlWihsvov

to an ICASE Environment (57:377)

Some benefits of integration of CASE toolkits (18:2) are:

1. Design information is preserved from activity to

activity in the software systems life cycle, eliminating

redundant input.

2. Bookkeeping tasks, such as those associated with

software design, construction, and documentation, can be

automated.

3. The ability to plan, monitor, and control the

software development process is improved.

2-15

4. The reconciliation and combination of similar design

representations and methodologies is encouraged.

2.9 Types and Categories of CASE Tools

CASE tools are automated software tools that "support the

implementation of both procedures and methods and tend to

reduce the dog work associated with manual procedures" (53:1).

Although "the ultimate goal of CASE tools is to automate

software development from design to coding" there is no one

CASE tool that "does it all" as far as providing automated

support across the software systems life cycle (62:184).

Instead, there are a number of types and categories under

which a particular CASE tool may be classified.

Software Tool Categories. As mentioned previously, a

variety of software tools are utilized as part of a SEE.

These software tools can be grouped into 3 categories:

Project management tools, system design and verification tools

(technical tools), and support tools (11:544; 31:1).

Project Management Tools. These management tools

include tools which allow the project manager the capability

to track and project the progress of a project. Examples of

these tools are spreadsheets, project cost, schedule and

tracking estimates (11:544), and data modeling and life cycle

tools (58:23).

System Desiqn and Verification Tools. These

technical tools deal with the analysis, design,

2-16

implementation, verification, maintenance, and documentable

efforts involved in the software engineering effort (11:544;

58:22).

Support Tools. These types of tools can be further

categorized into two types, system development support tools

and system performance support tools.

System development support tools include automated

support tools such as data base management systems,

precompilers, syntax checkers, and others (11:545).

System performance support tools include software and

hardware tools that assist in "tuning system hardware,

software, and communications to meet the requirements of new

systems development" (11:545).

CASE Tool Categories. In the course of this research

effort, many categorizations for CASE were presented by

various authors. One such categorization groups CASE tools

into 3 classes: Front end, back end, or reengineering CASE

tools (7:22). Front end CASE tools provide support for the

analysis and design phase of the software systems life cycle.

Back end tools provide support for the construction phases of

the life cycle, the development and implementation phases.

Reengineering tools support the maintenance phase of the

software life cycle.

Another categorization of CASE tools is lower CASE and

upper CASE tools (4:73; 12:380; 52:10). Coallier describes

lower CASE tools as "programming oriented text based-tools,"

2-17

similar to the description of back end tools (12:380). His

description of upper CASE tools as "tools that address the

needs of software systems analysis and design" is similar to

the description of front end tools (12:381).

Yet another categorization of CASE tools describes them

as either vertical or horizontal (3:2; 18:6). Vertical CASE

tools are those which support the software engineer from the

requirements analysis phase to the implementation phase of the

software system life cycle. These tools are associated with

a specific phase of the software development life cycle.

Horizontal tools are software system management tools used for

documentation, configuration management, project management,

communicating and system building. These tools are associated

with different phases of the software development process.

2.10 Toolkit Vs. Workbench

Baram and Steinberg make a distinction between the terms

"toolkit" and "workbench." They define a toolkit as a

collection of CASE tools that support a particular phase of

the software systems life cycle. Workbenches are defined as

a complete set of tools that support the entire life cycle and

are integrated so that specifications are passed from one

phase of the life cycle to the next. Based on their

definitions, they contend that few complete workbenches exist

(4:73).

2.11 Benefits of CASE Tools

The benefits of implementing CASE tools as opposed to

2-18

using manual methods to accomplish software engineering

efforts are numerous. Some of the more obvious benefits are

increased productivity (7:23; 33:56; 32:220; 36:105; 45:89;

65:349), increased product quality (16:1; 32:220; 36:105;

45:89; 65:349), decreased project costs (16:5; 22:190;

36:105), and a decrease in the difficulty of maintaining a

generated project (7:24; 58:23; 65:349). These are similar to

the kinds of benefits experienced as a result of establishing

a SEE, which is expected since CASE tools are an aspect of a

SEE. Many of a SEE's benefits can be attributed to the

automated tool aspect.

Other benefits of incorporating CASE tools are:

Training and enforcement in the development methodologies
used, interactive graphics that support the diagrams of
analysis and design, single-entry documentation book
keeping that enables redundant specifications to be
generated from nonredundant dictionary contents, and
reminders and consistency checks (65:346).

Efficient allocation of staff, increased efficiency, and
minimal errors. (38:28)

Numerous studies have been conducted which confirm these

benefits. Barry Boehm's landmark survey of productivity

mentioned earlier in this thesis is an example of one such

study (28:2; 33:56).

Lempp and Lauber conducted a survey concerning the Ada

analysis, design and coding CASE environment, EPOS, studied

the impact of CASE environments on productivity, project

costs, software quality, and the impact of people working with

CASE tools (37:105). The results indicated an overall

increase in productivity, a 9% overall cost reduction, and

2-19

69.2% fewer specification and design errors. The study also

found that user acceptance of CASE tools increased over time.

The survey results indicated moderate savings throughout the

development phase, considerable improvements in software

quality, with revolutionary cost savings in maintenance being

achieved as a result of increased error detection in the

earlier phases of a project.

A study conducted by Charles Necco concerning the use of

CASE tools in computer based information systems found that of

the 15 organizations surveyed, 47% found a significant

improvement in productivity when CASE tools were employed,

while thie remaining 53% noticed moderate improvement. In

addition, 60% of the surveyed organizations noted significant

increases in product quality, while 40% noticed moderate

increases in this area (45:7).

Baram and Steinberg cite a study by M. Loh and R. Nelson

in which the biggest productivity gains of implementing CASE

tools were as a result of the automation of tasks such as

diagram drawing (4:73). Manual efforts in this area prove

both tedious and time consuming. A major problem of system

developers has been the "administrative burden of creating and

maintaining a large set of drawings" (63:109).

Similar results were found in a study by R. Norman and J.

Nunamaker. Ninety-one subjects ranked data flow diagrams

(DFDs) as the number one function desired in a CASE tool. The

reason cited was that the manual creation of DFDs was viewed

as extremely time consuming (47:1104).

2-20

The aforementioned benefits make a strong case for the

implementation of CASE tools in a software engineering

organization.

2.12 Potential Pitfalls of CASE Tools

Although numerous benefits exist as a result of

implementing CASE tools (as identified in the previous

section), there are also potential pitfalls that CASE users

should be aware of. A combination of these pitfalls and

misconceptions concerning CASE tools can result in a loss in

productivity rather than the anticipated gains that should be

realized when implementing CASE tools (10:120). The reasons

given by Chikofsky for this productivity loss are:

1. Organizations fail to comprehend the resources

required for successfully introducing a tool.

2. Tools are viewed as a means of saving a project that

is in crisis. In other words, tools are not viewed as simply

tools, but as problem solvers.

3. Organizations use the same tool in the same way for

all projects, failing to customize tools to the intended use

(if possible) or obtaining new tools if required.

4. Blaming the tool for anything that goes wrong with a

project.

5. Using the wrong tool for the job.

This last reason, selecting a tool that does not meet the

user's needs, is a common pitfall (39:17-1; 40:40). The

principal causes for this situation could be that tools are

2-21

selected before a SEE's software development process and

methods are established, or without an understanding of an

existing process or methods (this is discussed in more detail

later in the chapter). Other reasons may be the tool's

capabilities are incomplete or inadequate, the choice of a

tool is made prematurely, there are problems with the tool's

portability, the tool is too complex, or the tool is not

robust (39:17-1).

Clearly, a sound understanding of what a CASE tool's

capabilities are, which tools are required for a project, and

what they can provide the user, should exist to prevent the

misuse of these tools. Useful tools should be introduced into

the environment on some orderly basis (23:3).

Wilson identifies what he considers to be inherent

limitations of CASE tools (65:346). Some of these limitations

are:

Lack of integration makes tool selection a time consuming
and tedious process and implementation difficult to effect;
integration becomes the responsibility of the purchaser.

Constraints on the methodologies supported may mean that
the tool does not provide the flexibility for the
developers to apply the techniques with which they are
familiar, or that are appropriate for a particular
application.

Advanced graphic capabilities are often offset by poor
documentation production capabilities, which inhibit the
availability of well designed hard copy specifications for
user review.

Gibson states that many of the problems that occur with

CASE tools are a result of human misconception (21:12). He

identifies his "Baker's Dozen" of major misconceptions

2-22

concerning CASE and integrated CASE (ICASE). These

misconceptions are presented in Table 2.1.

Table 2.1 Major Misconceptions Concerning CASE and
ICASE (21:12)

1. CASE is a methodology or replaces existing

methodologies or techniques.

2. CASE is a monolithic concept.

3. CASE is an extension of or replacement for
fourth generation languages.

4. All CASE systems have the same structural
frameworks and outputs.

5. Using CASE will make you a better strategic
manager or system professional.

6. CASE obviates the need for discipline and
close management of application development.

7. The most important output of CASE is
applications development software.

8. Productivity gains with CASE are immediately
evident.

9. Use of CASE insures consistency of output.

10. CASE will eliminate the DP applications
development backlog.

11. CASE will eliminate the systems analyst.

12. There is no difference between ICASE and
CASE.

13. Reengineering and reverse engineering are
synonymous in the CASE environments.

2-23

K4

The potential for problems in the implementation of CASE

tools is evident. Many of these problems can be avoided by

insuring that a comprehensive evaluation of the SEE and of the

CASE tools under consideration for use is performed.

2.13 The Software Process

Prior to evaluating and selecting a CASE tool to automate

the activities of a software systems life cycle, a "systematic

set of software development processes and methods" (58:23)

necessary for successful software engineering, must be defined

(29:9; 58:23).

Humphrey defines the software process as "the set of

tools, methods, and practices we use to produce a software

product" (30:3). Smith identifies the software process as one

of the three aspects of software engineering, similar to

Charette's description of a SEE as well as Sharon's

description of CASE given earlier. These aspects are defined

as follows:

Processes - Sequences of phases, tasks, and activities
required to develop software. One part of the software
process is the sequence of software life cycle steps as
they are defined in a particular organization.

Methods - Techniques used to perform specific defined tasks
and activities. Several methods may support each task or
activity in the software development process. For example,
the task of constructing a data model may be performed
using the Chen, Merise, or Bachman techniques.

Tools - Automated support for processes and methods.
(58:23)

The process and methods of a SEE must be established prior to

tool selection. Otherwise, the process or method might be

2-24

modified to fit the tool chosen. According to Smith, "far too

many organizations have purchased a tool, then tried to force-

fit its own culture and methodology to the demands of the

tool" (58:24). Without a process and methods, an organization

will be unable to take full advantage of a tool's

capabilities.

2.14 CASE Tool Criteria

Various ways exist to group criteria used to evaluate

CASE tools. Baram and Steinberg group selection criteria into

ten categories: Learning Curve, User Interface, Data

Dictionary, Analysis, Reports, Graphics/Diagramming,

Interfacing to Other Systems, Text/Documentation, Project

Management, and Prototyping (4:74-80). Each of these criteria

is representative of a lower level group of criteria.

Lawlis specifies two sets of criteria, a list of thirteen

top level absolute criteria which, like Baram and Steinberg's

list, can be further decomposed into lists of detailed

relative criteria (34:343-357). Regardless of the way in

which the criteria are grouped, it is important to point out

that not all criteria may apply. The chosen criteria should

be based upon the SEE in which the CASE tools will be

integrated. The evaluator must choose the criteria that apply

to their environment and the software process used.

As an example of criteria that might be used to evaluate

a CASE tool, this research considers the criteria grouping

proposed by Firth and others. They group the criteria used to

2-25

evaluate CASE tools according to the "aspects of a tool's

acquisition, support, and performance they address" (17:19).

These aspects are ease of use, power, robustness,

functionality, ease of insertion, and quality of commercial

support. Although this is a comprehensive list of criteria,

it is by no means complete or all inclusive. For example,

criteria such as reusability, survivability, and integrity

(34:344) are omitted.

Ease of Use. Ease of use refers to the "user

friendliness" of a tool. Aspects of ease of use are the

human/system interface, helpfulness, error handling, and

tailorability.

The Human/System Interface. Features of the

human/system interface that should be considered when

evaluating a CASE tool include windows for multiple views, an

easy to use menu system, multiple user capabilities, mouse

capabilities, and display features such as color and reverse

video (4:74; 17:21; 20:65; 53:6; 62:127; 66:61).

Helpfulness. Features of helpfulness to consider

are the availability of an on line help facility and a

tutorial, multiple modes of operation based on the user's

skill level, and useful graphics features such as icons, shape

and texture (4:74; 17:20; 20:65; 22:192; 34:355; 53:6; 62:128;

66:61).

2-26

SI

Error Handling. Features of error handling are

error recovery capabilities, error prevention capabilities,

automatic back up capabilities, error detection and

correction, and inconsistency detection (4:75; 17:20; 53:6).

Tailorability. Features of tailorability are the

capability to shut off unwanted features, the capability to

reformat input and output, and the availability of vendor

assistance in tailoring the tool to an organization's needs

(17:19; 34:355).

Power. Power is concerned with the various performance

features of the tool. The different aspects of power are

structural modifiability, leverage, state and performance.

Structural Modifiability. Features of this aspect

are the capability to operate on view objects (i.e. DFDs) at

different :evels of abstraction or detail, the capability to

modify collections of objects, the availability of

modification features such as zoom, insert, delete, or modify,

and the capability to modify view objects freehand (4:77;

17:21; 20:65; 22:192; 53:6).

Leverage. Features of leverage to consider are the

capability for users to add macros, and the application of

commands systematically to the entire collection of view

objects (4:75; 17:22).

2

2-27 4

i1

A!

State. This feature refers to a CASE tool's

capability to remember previous and current session usag-,

providing the user the capability to save and restore view

objects (17:23).

Performance. Performance refers to a tool's

capability to function efficiently and be responsive to the

user. Considerations of this feature are the capability of

the tool to support multiple users, tool response time,

command execution time, maximum workload, and the capability

to handle the size of a required task (17:23; 22:193).

Robustness. Robustness of a CASE tool refers to the

reliability and consistency of the tool. Aspects of

robustness are consistency, adaptability, and tool

maintainability.

Consistency. This feature deals with the

consistency of tool operation, such as the capability to store

output and then retrieve and access that output (17:24;

22:193; 34:361).

Adaptability. Adaptability refers to a CASE tool's

ability to evolve over time due to changing requirements or a

changing environment, or for tool enhancements (17:24).

Tool Maintainability. This feature refers to a

tool's capability to be examined and possibly repaired by the

2-28

user in the event that tool flaws or bugs occur (17:25;

34:350).

Functionality. Functionality deals with a tool's

methodology support and correctness.

Methodology Support. This feature is concerned with

a tool's capability to support one or more software

engineering methodologies, as well as supporting all aspects

of a methodology. Methodology support is also concerned with

the ability of a tool to integrate additional methodologies

and to adapt to in house methodologies (13:29; 17:25; 20:65;

22:192; 53:6; 62:127).

Correctness. This feature refers to a tool's

ability to operate correctly and produce correct output

(17:26; 34:362).

Ease of Insertion. Ease of insertion refers to how

easily a tool is incorporated into an environment based on the

learning curve of the tool and the SEE itself.

Learning Curve. This aspect refers to the

complexiLy of the tool and the ability and background of the

user. Consideration should be given to the time required to

learn a tool, novice vs. expert capabilities, and command

consistency (4:74; 17:26; 53:6; 58:27; 62:127).

Integration. This aspect refers to the ability to

integrate the tool into the SEE. Consideration should be

2-29

given to the similarities between the tool under consideration

and existing tools in the SEE, the tool's compatibility with

the SEE hardware and operating system, the ease of

installation, use of a common database, and how well the tool

integrates with other tools in the SEE (13:29; 17:27; 20:65;

22:193; 60:39; 66:61).

Quality of Support. Quality of support refers to the

history of the tool and vendor history and support.

Vendor History. This feature concerns the vendor's

past performance concerning user support, as well as the

vendor's reputation (17:28; 34:356; 53:6; 58:27; 62:128).

Tool History. This aspect concerns the use of the

tool under consideration at other organizations and evaluation

of its performance at those organizations (17:28; 53:6;

62:128).

Vendor Responsibilities. This aspect concerns

vendor responsibilities such as tool installation support,

training on tool usage, types and amount of documentation

provided, maintenance responsibilities of the vendor, and

responsible feedback from the vendor to the user's questions,

possibly by use of a hotline (11:550; 13:29; 17:29; 34:356;

40:44; 53:6; 58:27; 62:128).

Legal Considerations. This aspect deals with the

purchasing, licensing, or rental agreements concerning the

2-30

tool, as well as the cost of the tool , explicit contract

agreements, refund periods, source code accessibility rights,

and availability of site licenses (11:551; 17:28; 34:356;

53:6; 58:27; 62:128).

2.15 A Process for Evaluating CASE Tools

Defining and applying criteria for the evaluation of CASE

tools is just one step in selecting and applying CASE tools.

This is a four step process that involves a needs analysis

(17:31; 25:371; 54:357), an environment analysis (17:31;

67:42), the development of a CASE tool candidate list (17:32;

62:125; 67:43), and the application and selection of a CASE

tool, toolset, or work bench (17:33; 62:125; 54:34).

Needs Analysis. In this step of the assessment process,

the purpose for which a tool would be needed is determined.

Before choosing a tool. "the development process to which they

are applied must be established" (25:371). The tool must make

a contribution to the overall task of an organization. "It

must contribute to a process controlled by a method" (17:31).

This step begins by including all personnel affected by the

incorporation of CASE tools into the environment in the

analysis process (54:357). Questions to be considered at this

phase are (17:31; 54:357):

1. What model of software development is used by the

organization?

2. What major tasks are required by the model?

2-31

3. Which tasks could be better performed with automated

tools?

4. Which tasks are lacking in adequate tool support?

5. What are the perceived benefits to be obtained from

specific new tools?

To be successful in the implementation of CASE requires

understanding and cooperation in the early phases of the

process. The organization should understand the overall

software development process before deciding to acquire tools.

This involves getting the full cooperation of everyone

involved (54:357).

Environment Analysis. This step involves the analysis of

the organizational environment in which the tool will be used.

Environment constraints such as economics, time, skill level

of personnel, etc., need to be considered to determine if a

tool can be used successfully in the environment (17:31).

Develop a Candidate List. This step entails the

compilation of a list of potential CASE tool candidates. This

can be accomplished by surveying the software market to

determine available tools (62:124). Other means of

identifying candidate tools include contacting vendors for

information (67:43), attending trade shows, obtaining trade

publications, and surveying technical journals (17:32;

54:361).

2-32

Applying Criteria and Selecting a CASE Tool. This step

in the tool selection process involves five phases:

establishing criteria, determining test cases, executing test

cases, analyzing test results, and choosing a tool.

Establishing Criteria. A sampling of evaluation

criteria was presented earlier in this chapter. Each

organization needs to determine what criteria in the provided

list should be applied, as well as additional criteria that

must be augmented as a result of the organizations needs

(17:33).

Determining Test Cases. Once a criterion is

established, experiments need to be developed that fully test

that criterion (17:33). Testers and evaluators should expect

to spend time learning the tool before applying functional

tests (67:44).

Execute Test Cases. It is important in this step

not to rely too heavily on the product literature and

documentation as a source for testing criteria. The tests

conducted should be by hands on use of the tool (17:33). If

early results show inadequacies in the tool, further testing

may not be required.

Analyzing the Results. In this phase, the results

of all the tests are analyzed. The results of the tests for

each CASE tool under consideration are first examined

individually, then collectively to compare the CASE tools. The

2-33

analysis should "determine how well the tool satisfies each of

the criteria" (17:34).

Selecting The Tool. The finl phase of the entire

process is the selection of the CASE tool that best suits the

needs of the organization (17:34; 54:362; 67:44). It is

important to remember that a tool may not be found that is a

perfect match for the organization's needs. The best that can

be hoped for, short of in-house development of a tool, is to

select the one that best matches the organization's needs.

2.16 Summary

An established SEE is highly desirable for any software

systems development organization. A SEE can be classified

based on the support given to various stages of the software

systems life cycle, and can be further described by its

architecture. Although each SEE is unique, there are three

common factors that every SEE is composed of: a software

process model, at least one method, and automated tools. An

understanding of the process and method(s) is required before

the appropriate automated tools can be evaluated and selected

for integration into the SEE.

In chapter three, the SEE at AFIT will be examined and

defined. The criteria for evaluating the CASE tools under

consideration, as well as the evaluations used, will be

presented. Finally, a heuristic for evaluating the CASE tools

will be introduced.

2-34

III The Software Engineering Environment

This chapter addresses research question one, "How can a

software engineering environment at AFIT be defined?", and

research question two, "What criteria should be used to

evaluate the CASE tools under consideration?" The chapter

begins with a description of the SEE at AFIT. The type of SEE

as well as the architecture are presented. The categories of

the CASE tools being examined are then defined. Next, the

criteria to evaluate the CASE tools under consideration are

established. Questionnaires for use by CASE tool evaluators

are discussed, as well as numeric weight assignments for the

criteria. The approach taken to evaluate the CASE tool sets

is then explained. Test cases to be used during the

evaluation process are discussed. Finally, a methodology for

software evaluation and selection is presented.

3.1 The SEE at AFIT

The type of SEE that currently exists at AFIT can be

described as a general environment. As discussed in chapter

two, this type of environment supports all phases of the

software systems life cycle, independent of a specific

programming language (although Ada is the predominant language

used). This general environment at AFIT can be further viewed

as a distributed environment composed of several separate

environments: a UNIX environment, a VMS environment, a

Rational environmetit, and a PC environment. The VMS and PC

3-1

environments can be classified as general environments. The

UNIX environment at AFIT lacks the tools to support the

earlier stages of the software development life cycle,

primarily supporting the implementation and maintenance

stages, and can be classified as a toolkit environment. The

Rational environment can be classified as both an APSE and a

programming environment since it supports software development

using Ada exclusively. These four environments communicate

via the AFITNET network. A general architectural view of this

distributed environment is presented in Figure 3.1.

The architecture of the VMS, UNIX, and PC environments

can be viewed as a three layered architecture consisting of a

hardware layer, an operating system (OS) layer which includes

both native and virtual operating systems, depending on the

machine being considered, and a tool support layer. An

environment adaptor and project user support layer, such as

the one presented in Penedo and Riddle's architecture example

in chapter two, is not considered for these environments. In

a software development organization with an established

software process model, this layer would be utilized by both

environment adapters who select and compose the components

found in the various architecture layers to provide a project

specific environment, and project users who build application

systems using the project specific environments provided by

the environment adapters (50:692). This layer is considered,

3-2

Network Servers

Network

Process

Managemenj Tools Tools Tools

Tools Operating Operating Operating

Operating System System System

System

Hardware Hardware Hardware Hardware

Rational UNIX VMS PC
Environment Environment Environment Environment

Figure 3.1 - AFIT Distributed SEE Architecture

however, for the Rational environment, since the capability to

manage the process exists.

The VMS Environment. The VMS architectural hardware

layer consists of a DEC VAX 6420, a DEC VAX 8550, a VAX 8650,

a DEC 11/785, ten VAX Station IIIs, a VAX Station II, two

micro VAX IIs, and two micro VAX IIIs.

The OS layer consists of the VMS OS, which serves as both

a native OS and virtual OS for most of the machines, and

3-3

handles object, interface, and environment management.

The tool layer is composed of a set of tools necessary to

support the software development life cycle. Tools that

support requirement analysis and design are DECdesign, VAXset

with Program Design Facility (PDF), and Excelerator.

Implementation tools include: compilers and editors to support

the Ada, BASIC, BLISS, C, FORTRAN, LISP, and Pascal

programming languages; VAX Debug for debugging; VAX LSE/SCA

for language sensitive editing and source code analysis; VAX

DEC/Code Management System (CMS) for code and configuration

management; VAX DEC/Module Management System (MMS) for system

building; VAX DEC/Test Manager (DTM) and VAX Performance and

Coverage Analyzer (PCA) for integration and testing; DECwrite

and VAX DOCUMENT for documentation; VAX Notes and Mail for

communications; DECwindows, DEC GKS, and DEC PHIGS for user

interface tools; Rdb/VMS with VAX SQL and VAX CDD for

information management.

The UNIX Environment. The UNIX architectural hardware

and OS layers consist of: an Elxsi 6420 which executes Embos,

Elxsi's native OS and UNIX 4.3 bsd virtual OS; a VAX 11/785

which executes UNIX 4.3 bsd virtual OS; an Elxsi 6400 which

executes Embos and UNIX 4.3 bsd; Three Counterpoint 22e

machines that execute AT&T System V OS; Sun work stations

which execute Sun OS 4.1.1 (AT&T System V with bsd

extensions).

3-4

The tool layer of the UNIX system is composed mainly of

tools that support the implementation stage of the software

development life cycle. Programming languages supported are

Assembler, Ada, C, FORTRAN and Pascal. SLAMII is available as

a simulation language and is supported by TESS which can be

used to graphically prototype SLAMII simulations. Language

editors include the UNIX vi editor and EMACS. Tools for

debugging, code reformatting, file transfer, data modeling,

and configuration management are available as well as a window

system for interfacing, mail and write tools for

communications, and Word Perfect, Publisher, and LaTex for

documentation.

The PC Environment. The PC hardware and OS layers of the

AFIT SEE architecture is composed of 386 and 286 based PCs

which execute the Disk Operating System. The tools available

in the tool layer which support software development include:

data modeling tools such as DBASEIII, Paradox, and INGRES;

system design and verification tools such as POSE,

ObjectMaker, Design Aid, NASTEC 2000, and Excelerator;

implementation tools that support the Ada, BASIC, C, PROLOG,

Pascal, FORTRAN, and LISP programming languages; file transfer

tools including Kermit and File Transfer Protocol; tools for

documentation, including LaTex, Word Perfect, WordStar, TED,

EDT, and MicroEMACS.

Not all of these tools are visible to every AFITNET user.

Some of the tools, such as Excelerator and NASTEC 2000, are

3-5

available on a project or user need basis. Access to these

tools are controlled by the systems administrator.

The Rational Environment. The hardware layer of the

Rational environment is composed of a Rational RI000 series

400 single cabinet machine. There is an operating system that

performs environment management functions and is referred to

by revision number, currently D-2. Since Rational is a self

contained environment, no specific tools are designated that

perform functions which support the different stages of the

software development life cycle. Instead, software

development support is considered to be provided by the

environment (55).

The Rational environment is a totally integrated,

interactive, knowledge based environment for Ada. A complete

Rational environment supports Ada software development through

system design, as well as system reengineering, and project

organization facilities for editing text files and Ada source

programs. The environment also supports interactive syntactic

and semantic assistance for developing Ada programs,

interactive unit and system testing through a source level

Rational debugger, and configuration management and version

control. As the Rational environment currently exists at

AFIT, however, graphical front end support for the software

system life cycle is not available. A Rational Design

Facility (RDF) would provide the necessary requirements

analysis and design capabilities which would make the Rational

3-6

environment an APSE, but this RDF is not currently available

at AFIT (59). The environment does provide for process

management so that project managers can determine a project

specific environment.

The Network. A network is utilized which allows the

aforementioned environments to communicate. The network

employs sixteen servers including one Everex 386 33 MHZ

machine and fifteen Zenith 386 25 MHZ machines. The Computer

Engineering Department utilizes the Everex and a Zenith as

file servers. The network provides for a distributed

environment. This distributed environment allows a software

developer to employ the capabilities of numerous environments

for the development of one software system. For example, a

user may use Excelerator to analyze and design a software

system in the PC environment, then use another environment

such as UNIX or VMS to generate the code for their design.

Files can be transferred between the various environments

using the file transfer tools available. Conversely, the

software developer may choose to perform all the software

development functions in one environment, for example, VMS.

3.2 CASE Tool Classification

The CASE tools under consideration were classified based

on the types and categories for CASE tools provided in chapter

two of this document.

3-7

DECdesign, POSE and ObjectMaker can be categorized as

system design and verification tools since they provide the

capability for either object oriented or functional analysis

and design of software systems. As such, these tools can be

further categorized as front end, upper CASE, or vertical

tools.

3.3 Criteria to Evaluate CASE Tools Sets

The criteria used to evaluate the CASE tool sets that

were under consideration were largely derived from the

Software Engineering Institute's 1987 technical report "A

Guide to the Classification and Assessment of Software

Engineering Tools" (17:19-30). Other sources were used as

well (4:74-80; 20:65-66; 22:191-193; 34:343-357; 47:1104;

52:14-15; 53:6; 62:127-128). Criteria presented in these

documents applicable to the AFIT SEE software development

process and methods were used.

The criteria used were grouped into several categories of

top level criteria. Each category contained lower level

criteria that fell within the top level category. A

description of these criteria is provided in Appendix B. Each

top level criterion was assigned a numeric weight representing

its level of importance as determined by AFIT software

engineering instructors. A scale of 0-10 was used where the

value 0 indicated minimal importance and the value 10

indicated maximum importance. Weighting the criteria allowed

3-8

for use of a methodology to evaluate CASE tools which will be

discussed later in the chapter. The resulting weighted

criteria chart is provided in Appendix C.

Two questionnaires were then developed for use by CASE

tool set evaluators, one for the novice CASE tool evaluator,

and one for the expert who has had experience with the tool.

Evaluators were asked to rate the support given to each top

level criterion by the CASE tool they were evaluating. A

scale of 0 to 10 was used with a 0 indicating no support fcr

the top level criterion, and a 10 indicating maximum support.

An example of the evaluations developed for each group is

provided in Appendix D. The collective results of the

evaluations were then used to evaluate and compare the CASE

tools sets.

3.4 Evaluation Approach

The approach taken to evaluate the tool sets began with

an examination of the process for evaluating CASE tools

presented in chapter two. This involved examining the first

three steps of the process, the needs analysis, the

environm, L analysis, and the development of a CASE tool

candidate list.

Step one in the evaluation approach involved a needs

analysis to determine the purpose for which a tool would be

needed. This required addressing the questions posed in

chapter two concerning needs analysis.

3-9

In answer to question one, "What model of software

development is used by the organization?", no model really

exists since AFIT is an academic environment as opposed to a

software development organization. Engineering graduate

students apply software development methodologies, presented

as part of the curriculum, as required. These methodologies

can be categorized as functionally-oriented methodologies or

object-oriented methodologies.

Question two asks "What major tasks are required by the

model?" Again, no set model of software development exists.

Graduate students are tasked to apply the methodologies

presented to software engineering class projects.

Question three, "Which tasks could be better performed

with automated tools?" and question four, "Which tasks are

lacking in adequate tool support?" lend themselves more to a

software development organization where large software systems

are produced. Software engineering products produced by AFIT

graduate students are scoped so that quarterly class

requirements can be satisfied. These students are reluctant

to spend the time required to learn how to use an automated

tool to perform a given software engineering task.

This leads to question five, "What are the perceived

benefits to be obtained from specific new tools?" Since

students are reluctant to take the time to learn how to use a

CASE tool, it should be stressed that learning the tool for

the purpose of using it on a class project is not as important

? .10

-L

as being introduced to the tools of the software engineering

professional and becoming educated about the benefits and

potential pitfalls concerning CASE tools (as discussed in

chapter two). In addition, graduate students may find the

tools to be beneficial when used as part of larger projects,

i.e. thesis work.

The second step of the evaluation approach involved an

analysis of the organizational environment. As mentioned

earlier, AFIT is an academic environment where no one

particular model of software development, or software

development process exists. Instead, students are taught

various software development methods with emphasis placed on

functionally oriented and object oriented methods. Students

and staff require an automated tool set that will assist in

performing the tasks required during each activity of the

software development process.

The third step of the process was simplified since the

candidate CASE tool list was already established prior to the

thesis effort. Experienced software engineering instructors

had chosen tools which they determined to be potential

candidates for use at AFIT. However, now that a method for

tool evaluation has been established, it can be used on future

potential candidate tools as well.

The fourth stage of the CASE tool evaluation process,

applying criteria and selecting a CASE tool set, required the

most effort. As already mentioned, criteria had to be

3-11

established that pertained to the AFIT SEE. These criteria

were then incorporated into questionnaires. To apply the

criteria for the purpose of evaluating the CASE tools required

the implementation of comprehensive test cases. These test

cases fully tested the established criteria and were

representative of applications that are typical for the AFIT

environment. The establishment of these test cases involved

consultation with AFIT software engineering and information

systems management instructors who provided test cases which

were actual assignments given to their graduate students.

These same graduate students, as well as students enrolled in

the Professional Continuing Education (PCE) software

engineering short courses, voluntarily participated in the

evaluation effort. Since the CASE tools under consideration

were upper CASE, the test cases used by the students were

constructed for software analysis and design using functional

and object oriented methods. The test cases are presented in

Appendix E.

3.5 Methodology for Software Evaluation and Selection

Upon completion of the CASE tool set forms, a methodology

for software evaluation and selection was required to quantify

the tool sets' performance for evaluation and selection.

Three software selection methodologies were considered (2:707;

24:508; 34:88-101). The methodology chosen, previously used

for software other than software applications, was modified

for the specific purpose of selecting software packages

3-12

I j

(2:707). This methodology was chosen because it provides a

measurable means for evaluating CASE tools through the

creation of a ratings matrix that can be maintained and

modified and used to determine how a CASE tool rates in

comparison to other similar CASE tools already incorporated in

the AFIT SEE. An evaluator would be able to determine in a

glance how a CASE tool under consideration compared with tools

already in use at AFIT.

With this methodology, three measures of software quality

were considered:

The frequency with which the attribute ratings of one
package exceeded those of another, the presence of
outliers, where very poor performance may exist on a single
attribute and be glossed over by compensatory methods, and
the cumulative magnitude of attribute ratings on one
package that exceed those on others. (2:707)

Implementing the methodology involved a six step process.

A general description of the six step process (2: 708-710) is

as follows:

1) Determine the frequency of occurrences in which

comparisons of a package's important attributes are rated

greater or equal to another package's same important

attributes.

2) Identify a single outlier, if any, where one package

is inferior to another. This prevents very good performance

on most attributes from disguising very poor performance of

one attribute that could substantially impair utilization.

3) Determine the collective, overall magnitude to which

the ratings of one package are superior to another. The

3-13

larger and more frequent the positive differences between

attribute ratings of the packages, the more likely one package

is superior to another.

4) Compute the pairwise ratings of the packages.

5) Compute Kendall scores for all the packages and use

these scores to rank order the packages from maximum to

minimum, where maximum is the highest quality.

6) In the case of a tie, recompute the figures for the

packages that tied.

The results and analysis of the evaluation and selection

processes are examined in chapter five.

3.6 Summary

The SEE as it exists at AFIT can best be described as

both a general and distributed environment. The combined

environments that compose the SEE provide support for all

stages of the software systems life cycle. Since AFIT is an

academic environment rather than a software development

organization, no software process model is established and no

one method is employed. Instead, students are taught various

methods of software development. Thus, the criteria developed

to evaluate the tools under consideration, the CASE tool

evaluations, and the test cases used were established based on

the SEE and the various methods presented. To analyze the

results of the evalua\ions required the use of a methodology.

The efforts involved in evaluating the CASE tools and the

3-14

difficulties encountered in the process are presented in the

following chapter.

3-15

IV The Evaluation Process

This chapter examines the process of evaluating the CASE

tools under consideration. It begins with an explanation of

how the evaluation forms were distributed. Next, the test

cases used to test the functionality of the tools are

examined. Finally, problems encountered during the evaluation

process are discussed. The selection process is discussed in

the next chapter.

4.1 Distribution of Evaluation Forms

Two types of evaluation forms were distributed to the

evaluators who assisted in this research effort: a form

designed for experts and a form designed for novices.

Evaluation forms had to be developed which reflected the CASE

tool user population at AFIT; experts, such as staff or

experienced students, who had previous and substantial CASE

tool experience, and novices, such as students who had never

used a CASE tool. The results of these evaluations were

analyzed and the results of the analysis were used to make

recommendations concerning the evaluated CASE tools (discussed

in the next chapter). An example of these evaluation forms

can be found in Appendix D.

Expert Evaluation Forms. These forms were designed for

evaluators experienced in the acquisition and use of CASE

tools, and who were familiar with the CASE tools under

consideration as well as the environment in which they might

4-1

be used. Detailed questions concerning tool support for the

criteria presented were asked which required knowledge of the

software development I process, the various methodologies

employed, and the role' of CASE tools in a SEE.

Copies of these evaluation forms were distributed to the

software engineering staff for the purpose of evaluating POSE.

These instructors were familiar with the tool and its

capabilities, having incorporated it into their curriculum for

use by their students. Since no DECdesign or ObjectMaker CASE

tool expert was resident at AFIT during the time of this

research, the researcher assumed the role and completed the

evaluations. This involved interviewing the systems staff

responsible with acquiring and loading the tools onto their

systems, the vendors responsible with providing the tools and

support required, and instructors who had some familiarization

with the tool. It also involved research of ObjectMaker,

DECdesign, and Digital manuals as well as testing of the tools

by the researcher.

Novice Evaluation Forms. These forms were designed for

evaluators with little or no experience using CASE tools.

Questions were designed to acquire the evaluator's opinion of

the CASE tool's performance and ease of use. The novice

evaluation form was considerably less detailed than the expert

evaluation form.

Novice forms were distributed to students who used the

tool to support their various class projects. AFIT

4-2

engineering students evaluated DECdesign using this form.

Logistic and engineering students and the researcher evaluated

POSE using this form.

4.2 Test Cases

The test cases used to evaluate the CASE tools were

developed by the software engineering instructors at AFIT.

These test cases were chosen because they reflected the

methodologies presented at AFIT and were used as actual

assignments to the students who were evaluating the tools.

The problem statements for these test cases are presented in

Appendix E.

The first test case involved developing an automated

college registration system. Students in the software

analysis and design course used this test case to test the

functional analysis and design capabilities of POSE and

DECdesign.

The logistics students developed their own test cases,

approved by their instructor, to test the data modeling

capabilities of POSE. Since there were a number of different

test cases developed by the students, the problem statements

are not included in Appendix E.

The final test was developed by software engineering

instructors and was previously used as an assignment. This

case involved the development of an automated spell checker.

The researcher used this test case to test the functional

analysis and design capabilities, data modeling capabilities,

4-3

and real time design capabilities of DECdesign, POSE, and

ObjectMaker. Since the Yourdon method is presented in the

AFIT curriculum, it was chosen as opposed to the Gane & Sarson

method as the functional analysis and design method. The

researcher also tested the object oriented analysis and design

capabilities of ObjectMaker using this final test case.

Due to the short duration of their course, PCE students

did not use a specific test case to evaluate POSE. Instead,

they were given a demonstration of the tool by their

instructors. They then experimented with the tool

individually and performed an evaluation based on their use of

the tool over a two week period.

Some of the hard copy products generated using the tools

are presented in Appendix G.

4.3 Problems Encountered

During the process of evaluating the CASE tools, several

problems were encountered. These problems were either tool or

tool support related.

Problems Concerning POSE. When the evaluation of POSE

began, the tool was implemented using a Zenith 248 PC. As a

result of using a 286 based machine, there was insufficient

memory available to load several of the modules in the

toolkit. This problem was rectified when the Zenith 248s were

replaced with UNISYS 386 based PCs.

4-4

Another problem encountered with POSE was the lack of

protection for a user's files. Although twenty copies of POSE

were available at AFIT, fourteen of those copies were loaded

on PCs used by the software engineering short course students,

and five were loaded on PCs at the Logistics school. Each of

these nineteen copies was accessible only on the machine on

which it was resident. Any files created and stored on a

given PC could only be accessed on that same machine.

The remaining copy was loaded on the AFIT PC network and

was available for use by anyone with login privileges.

Unfortunately, POSE stores all user created files to a common

area that can be accessed by anyone using the PC network. No

mechanism is provided to protect these files. This presented

a situation where an individual could easily access or corrupt

another user's files, intentionally or unintentionally. To

deal with this problem, PCE instructors permitted software

engineering graduate students access to their classroom PCs

when they were not being used by PCE students. Copies of POSE

were loaded on each PC as opposed to a network. Anyone using

a particular PC could still access any POSE generated files on

that machine, but access to these machines could be more

easily controlled.

A final problem concerning POSE was the availability of

documentation for use by the evaluator. Two complete sets of

user's guides were available to AFIT. Both sets were kept by

the short course instructors who used POSE as a part of their

4-5

curriculum. One of these copies was on loan to an AFIT

logistics instructor for the purposes of making copies for his

students. Software engineering graduate students interested

in using the tool had no documentation readily available.

This fact made using the tool less desirable to AFIT

engineering students.

Problems Concerning DECdesign. The main problem

concerning DECdesign involved processing speed. The tool was

originally loaded on a Digital work station used for research

purposes. When the tool was invoked on the work station it

took several minutes to load. It was determined that a main

frame would be required for file management in order to speed

the processing time of the tool. Using a VAX mainframe to

perform file management yielded an increase in the performance

speed of DECdesign, however, during peak periods, processing

still took several minutes. Further increases in the

processing speed required system administrator intervention.

A second problem encountered involved the conversion of

text and graphic files to Post Script form for generation on

a Post Script printer. When the tool was used to generate a

selected report, the user was able to preview the report which

appeared to be formatted correctly, before it was saved. The

user then had to use a system conversion command to convert

the report file from its original form to Post Script form.

When the converted report was generated, the format was

incorrect. All text and graphics were located in the lower

4-6

left hand side of each page with some overwriting of text

occurring. After research into the problem, the system

administrator determined that AFIT did not possess the latest

version of DECdesign. This created another problem. Access

to previously created DECdesign files was not possible during

the time required to load the new version of the tool. This

occurred at a period of time in the research effort when the

CASE tool evaluations were being performed. This deterred

potential evaluators from using DECdesign. As a result, only

two novice evaluations were completed. This low response

prevented the proper implementation of Anderson's methodology

for evaluating and selecting CASE tools. This is further

discussed in the next chapter.

A final problem encountered with DECdesign involved

periodic and arbitrary unintentional exiting from the tool.

Several times while creating different views using the tool,

the researcher was ejected from the tool. Upon reentry into

the tool it was discovered that any changes to the view being

edited at the time of ejection were not saved. This problem

was attributed to the fact that an older version of the tool

was being used.

Problems Concerning ObiectMaker. As previously

mentioned, the copy of ObjectMaker available to the researcher

was a demonstration copy. A password had to be obtained from

the vendor which provided the capability to test the tool's

functions.

4-7

m m~m w m W _______ I

The documentation provided was limited and included some

release notes, a tutorial, and an incomplete user's manual.

Instructions for creating diagrams using the various

functional or object oriented methods were not included. The

researcher had to determine how to create various diagrams

through trial and error.

Since he had compatibility problems with the window

package on the 386 based PCs and ObjectMaker, the systems

administrator originally loaded the tool set on a Zenith 248

PC. The memory space on this machine was limited which

resulted in a slow execution time when operating the tool.

Finally, the tool set was not available until the latter

stages of the research effort. The work load of the PC

systems administrator prevented the loading of the tool on a

PC until this time. Additionally, when the tool was first

loaded, the system administrator could not unlock the tool to

allow for execution in the evaluator mode. Instead, the tool

was locked in the tutorial mode. All efforts to unlock the

tool were unsuccessful. Rather than continue to try to unlock

the current version of the tool, the researcher decided to

wait for a version of the tool that had just been released.

When this version of the tool was received and loaded,

difficulties with the tool continued. The vendor eventually

sent a 286 based PC with the tool already loaded for the

researcher to use. Due to the time constraints, a cursory

examination of the tool was performed.

4-8

General Problems. Participation by software engineering

graduate students in evaluating the CASE tools was minimal.

Only two students attempted to use DECdesign. The low

participation was attributed to the aforementioned problems as

well as what the students perceived to be an unacceptable

learning curve based on the time available to work on their

project as well as the size of the projects assigned.

However, participation by the logistics students and PCE

students was adequate for the purposes of evaluating POSE.

4.4 Summary

Several test cases were implemented to evaluate the

performance of POSE, ObjectMaker and DECdesign. These test

cases were classroom assignments developed by AFIT instructors

based on the software development methodologies presented in

their courses. Using POSE and DECdesign to complete these

assignments, novice evaluators were able to become familiar

with the tools and determine how well a tool supported the

presented criteria, which were mostly concerned with tool

performance. Additional evaluations were performed by

instructors and the researcher. These evaluations were more

detailed than the novice evaluations and required a

familiarity with software environments, software development

processes, and the role of CASE tools based on the environment

and process. The results of these evaluations were used in an

algorithmic process presented by Anderson to determine how the

I
4-9

i

tools compared to each other and to establish a basis for

recommendations concerning the tools. The results of the

evaluations as well as the application of the algorithmic

selection process are presented in chapter five.

4-10

V Results and Discussion

This chapter addresses research question three, "How do

the CASE tools under consideration meet the established

criteria for each?", research question four, "How do the tools

under consideration compare, if at all, to each other?", and

research question five, "Do these tools belong in the software

engineering environment at AFIT, and if so, how would these

tools be incorporated into the defined environment?" The

results of the novice and expert CASE tool evaluations are

examined. The average numeric weights assigned to the tool

evaluation criteria by AFIT software engineering instructors

and the average criteria support rating assigned to the tools

by the tool evaluators are presented in the form of matrices.

These matrices are utilized in Anderson's six step methodology

for evaluating and selecting software. The results of this

methodology are examined and a comparison of the CASE tools

under consideration is made.

5.1 Evaluation Results

As previously discussed, several software engineering

instructors were asked to assign numeric weights to criteria

used for evaluating CASE tools under consideration for use in

the AFIT SEE. The survey results of the five instructors who

responded can be found in Appendix B. Ten evaluators

responded to the novice evaluation for POSE, two responded to

the novice evaluation for DECdesign, one responded to the

5-1

novice evaluation for ObjectMaker, and one evaluator responded

to the expert evaluation for DECdesign and POSE. Since the

sampling of respondents to the DECdesign and ObjectMaker

novice evaluations and the expert evaluation for both

DECdesign and POSE was very low, a comprehensive comparison of

the tools using Anderson's methodology could not be

accomplished. Rather, the evaluation results were used as a

means of examining the methodology to determine its worth in

evaluating and selecting CASE tools for use at AFIT. The

results also provided preliminary insights into the tools

evaluated. In order to better convey the capabilities of the

methodology, two functional analysis and design tools already

existing as part of the tool capabilities layer of the AFIT

SEE, Excelerator and NASTEC 2000, were evaluated by a resident

expert on the tools.

The average criteria weights and the average rating

assigned to each criterion were calculated and then used to

construct matrices to be used with Anderson's methodology.

These matrices are presented in Figure 5.1, the results of the

novice evaluations, and Figure 5.2, the results of the expert

evaluations. Figure 5.1 contains a 3 x 17 matrix to be used

in Anderson's methodology (the methodology and how the

contents of the matrix are used is discussed in the next

section). P, representing POSE, D, representing Decdesign,

and 0 representing ObjectMaker are rows one, two, and three of

the matrix. C is the criterion number and W is the weight of

5-2

importance assigned to each criterion. The numbering scheme

for the criteria referenced in Figure 5.1 is presented in

Table 5.1.

Figure 5.2 is the 4 x 33 matrix containing the results of

the expert evaluations. P, D, C, and W are the same as in

Figure 5.1. E (row 3) and N (row 4) represent the criteria

support rating assigned to Excelerator and NASTEC 2000. The

numbering scheme for the criteria referenced in Figure 5.2 is

presented in Table 5.2.

Results of novice evaluations

0 16.01 6.017.017.0 5.017.017.018.016.0 7.018.019.013.01 8. 8.01 9.01 7.0
C: criterion number
W: average weight assigned to criterion
P: average criterion support rating assigned to POSE (row 1)
D: average criterion support rating assigned to DECdeslgn (row 2)
0. average criterion support rating assigend to ObjectMaker (row 3)
Matrix A , I-3, n - 17, I-1..Ij - 1 l..n

Figure 5.1 Matrix A for Analyzing the Performance Ratings
of CASE Tools (Novice)

5.2 Anderson's Methodology

To use Anderson's methodology of evaluating and selecting

CASE tools, the following definitions need to first be

5-3

C

P

D 2.0 8.0 7.0 4.0 9.0 8.0 9.0 9.C 8.0 6.0 8.0 9.0 5.0 8.0 8.0 8.0 3.0

E 4.0 5.0 7.0 4.0 7.0 6.0 6.0 6. 1.0 1.07.0 4. 3.06 . 404

N 1. 2.0 1.01 1. 3.0 1. 2.0 1.0 0.0 0.C 1.0 0.0 2.0 20 1 . .

C 18 19 20 21 22123124 25126 27126 29130 31 32 33

W 9.4 10 8.0 8.6 9.0 9.0 6.2 6.0 6.4 7.6 8.2 5.0 3.8 5.8 6.2 9.2

P 7.0 7.0 6.0 6.0 8.0 8.0 4.0 0.0 5.0 10 7.0 7.0 5.0 7.C 8.0 8.0

D 9.0 6.0 4.0 9.0 9.0 7.0 8.0 8.0 5.0 9.5 10 10 9.0 10 9.0 3.0

5.0 4.0 7.0 7.0 7.0 5.0 4.0 7.0 8.0 7.0 6.0 7.0 6.01 7 .016.0 7.0

N,1.0 1.0 1.0 2.0 2.41.0 0.0 0.0 1.q 4.0 5.0 6.0 2._ 3.0 3.0

Figure 5.2 Matrix A for Analyzing the Performance Ratings
of CASE Tools (Expert)

considered (2:708): a,, represents the ratings of the ith CASE

tool set in regard to support for the jth criterion,

i = 1, 2,..., 1, and j 1, 2,..., n; AIl.n) = {ak)} (Figure 5.1

and Figure 5.2). In the case where A is used for analyzing

the performance rating of CASE tools as determined by novice

evaluators, 1 = 3 since three CASE tools are evaluated and

n = 17 since 17 criteria are rated so that A ,,:n) = A(3Y17)

(Figure 1). For the expert evaluations A(jxn) = A(,, 3 ,) (Figure

2). W, represents the weight or importance assigned to the

jth criterion by the software engineering instructors. Since

33 criteria are rated in the expert evaluations, j =1,2 .. .,33

indicating 33 different weights, W, through W,,, are assigned

to the criteria; s,, = {kla,, > a,,, k 1 1, 2 , n), i.e. the

set of criteria for which the rating received by the ith CASE

5-4

Table 5.1 Criteria Numbering Scheme for Novice
Evaluations

Criteria Criteria Number

Tailoring 1
Intelligence/Helpfulness 2
Graphics 3
Predictability 4
Error Handling 5
System/Human Interface 6
Tool Understanding 7
Tool Leverage 8
Tool State 9
Data Dictionary 10
Performance 11
Consistency 12
Self Instrumented 13
Correctness 14
Ease of Use 15
Learnability 16
Documentation 17

tool set is equal to or greater than the rating of the jth

CASE tool set, i = 1,..., 1 and j = 1..., 1. Using the

results of the expert evaluations, sixteen sets were

calculated and are presented in Table 5.3.

Is'j denotes the cardinality (size) of the set s,. In the

case where i = j, when the ratings of a tool set are compared

to the same exact ratings, the magnitude of s,, will be 33

since each rating is always greater than or equal to itself.

The magnitude of the sixteen sets presented in Table 5.3 were

calculated and are presented in Table 5.4.

d,= mmin (a, - aJklak S ak, k = 1, 2,...,n], the
k

minimum difference of the differences calculated between

ratings for the same criterion. Using the expert evaluation

5-5

Table 5.2 Criteria Numbering Scheme for Expert
Evaluations

Criteria Criteria Number

Tailoring 1
Intelligence/Helpfulness 2
Graphics - General Capabilities 3
Graphics - Specific Capabilities 4
Predictability 5
Error Handling 6
System/Human Interface 7
Tool Understanding 8
Tool Leverage 9
Tool State 10
Data Dictionary 11
Integration 12
Performance 13
Consistency 14
Evolution 15
Fault Tolerance 16
Self Instrumented 17
Methodology Support - General 18
Methodology Support - Specific 19
Life Cycle Support 20
Correctness 21
Ease of Use 22
Learnability 23
Software Engineering Environment 24
Database 25
Tool History 26
Vendor History 27
Purchase Agreement 28
Maintenance Agreement 29
User's Group/Feedback 30
Installation 31
Training 32
Documentation 33

results, these differences were calculated and are presented

in Table 5.5. These differences will be used later in the

methodology to identify single outliers that may skew the

overall rating assigned to a CASE tool. When i = j, the

resulting d,1 will be zero since each rating subtracted from

itself will yield zero.

5-6

Z= (maxmax a, min min a1j), i=1.....i, and

j= 1 n, i.e. the difference between the maximum and

minimum ratings contained in A. In the case where A reflects

the results of the expert evaluations, Z = (10 - 0) = 10,

since 10 and 0 are the maximum and minimum ratings assigned.

These notations, as well as the values calculated using the

results of the expert evaluations, will be used in the

following application of Anderson's methodology.

The Frequency of Important Attributes. The first step of

the methodology involves determining the number of times that

CASE tool set i has a rating equal to or greater than those of

CASE tool set j (ak a,,) on criteria with large weights

(indicating importance). If this occurs frequently, it is an

indicator that CASE tool set i is better than CASE tool set j.

In examining the average ratings assigned to the tool sets

by the novice evaluators, it was quickly determined that the

ratings assigned to DECdesign were all larger than the ratings

assigned to POSE. With this type of results, applying the

methodology would not be required because the choice of tools

would be obvious. The results of the expert evaluations were

used for the purpose of examining Anderson's methodology. It

should be mentioned again that the disparity in the number of

survey responses between the POSE and DECdesign novice

evaluations, as well as the low response rate to the expert

evaluations, made it infeasible to use the results of the

5-7

Table 5.3 Sets of Superior or Equivalent Criteria Ratings

S1, = (1,2,3,...,331

=1 (1,3,4, 5,6, 13,15,19,20,23, 26,27,33)

S1 (1,2,3,4,5,6,8,9,10,13,14,15,18,19,22,23,24,27,

28,29,31,32,331

S1 ([1, 2, 3,. ..- ,33 j

-'2 (2,5, 7,8, 9,10,11,12,13,14,16, 17, 18,21,22,24,25,26,
28,29,30,31,321

s2 2 = (1,2,3,...,33)

S2 3 f 2,3,4, 5,6,7,8,9,10,11,12,13,14,15,16,18,19,21,22,
23, 24, 25, 27, 28, 29, 30, 31, 321

s24 = (1,2,3,...,33)

=3 (7, 8,11,12,14,16,17,20,21,24,25,26,29,30,311

S3 [1,3,4,6,15,17,26,33)

s13 = [1,2,3,...,331

S34 =(1,2,3,... ,33)

=4 (17,251

S4 [(331

S43 =(6)

S4 4 [1,2,3,...,331

Table 5.4 Magnitude of Superior Criteria Rating Sets

1SII1 = 33 Isil - 23 Is,,l - 15 Is, 11 = 2

Is,,I - 13 t1,I - 33 1S321 - 8 IS.2 1 - 1

1Is13 1 - 23 1 sJ I 28 1 s33 1 - 33 1 s431 = 1

I S14 1 - 33 Is241 - 33 1 S341 - 33 Is44I = 33

5-8

Table 5.5 Maximum Differences Between Compared Criteria

d n = 0 d2 = -5 dl = -4 d, = -9

d 2 = -8 d22 = 0 d 32 = -7 d4 2 = -9

d13 = -7 d2 3 = -4 d33 = 0 43 = -8

d4 = 0 d24 = 0 d34 = I d44 = 0

evaluations to make strong recommendations concerning the

tools. Instead, the results were used to demonstrate the

application of Anderson's methodology and to provide

preliminary insights into the tools evaluated.

To reflect the frequency of important attributes, a

matrix F,,,.,= [FIJ is constructed where

F,1 =Wk / I W'J 1 1 and j =
k S.; k-1

F,) is the value obtained when calculating the sum of the

weights assigned to the criteria in set s,, divided by the sum

of all the weights. Using the results of the expert

evaluations, F,, and FIXI) were computed using the weights

assigned to the CASE tool criteria. F(1,1) = F(,4) and is shown

in Figure 5.3.

To understand the significance of the contents of F, a

comparison is made for each tool against all other tools

considered in the evaluation. When examining the contents of

F, the values in the matrix should be read by comparing the

tool in the row being considered against the tool in the

column being considered (i.e. F2.3 is a comparison of DECdesign

5-9

POSE DECdedn Exmcsl.r NASTEC

POSE 1.0 0A3 0.72 1.0

DECdelagn 015 1.0 0.16 1.0

Exclmu 0A2 0.25 IV0 1.0

NASTEC 004 0.04 0.39 1.0

Matx F

Figure 5.3 Matrix F Used to Determine the
Frequency of Important Ratings

to Excelerator). For example, Fl,1 has a value of 1.0

indicating that when the criteria support ratings received by

POSE are compared to the same ratings, the ratings are greater

than or equal to the exact set of ratings 100% of the time (as

would be expected). The values the evaluator would be

concerned with are those that result as a comparison between

the ratings of two different tools. For instance, the value

of F, 2 is 0.43 indicating that 43% of the heavily weighted

ratings received by POSE were greater than or equal to the

same set of ratings received by DECdesign. F2., has a value of

0.65 which indicates that 65% of the heavily weighted ratings

received by DECdesign were greater than or equal to the same

ratings assigned to POSE. An examination of the matrix would

suggest a best to last ordering of the tools as follows:

DECdesign, POSE, Excelerator, and NASTEC.

5-10

____________________I

In this step, the results suggest that DECdesign would be

a better choice for AFIT than POSE based upon the frequency of

superior ratings attributed to that tool set as opposed to

POSE, and also on the importance (weight) of each superior

rating. When the results are not so obvious, however, further

measurements must be made to identify the superior tool, if it

exists. In addition, outliers may exist which skew the

results of this matrix. For these reasons, further analysis

of the d~ta is required.

Identifying the Single Outlier. This step identifies a

single outlier if it exists, where the ith tool set is

inferior to the jth tool set. To show this, D(.,1) = {D,,) is

computed where

D, = id,,J/Z, i = 1,.. .,1 and k = 1,...,1

In this calculation, Idi2I represents the absolute value, not

the magnitude. Using the results of previous calculations,

the sets [D,,) were calculated producing the matrix D(,x4) which

is presented in Figure 5.4. When considering each value in

the matrix, a comparison should be made of the row tool set

against the column tool set (i.e. D2,4 should be interpreted as

a comparison of DECdesign to NASTEC). For example, the

results indicate that when POSE is compared to DECdesign, it

indicates that the outlier of very poor performance of

greatest significance has an eight point difference when

compared to the criterion rating received by DECdesign. When

DECdesign is compared to POSE, the outlier of significance has

5-11

a five point difference when compared to the criterion rating

assigned to POSE.

The matrix values represent the most significant

difference between the ratings received by one tool set when

compared to the ratings received by another tool set. In the

cases where i = j (i.e. D 1,, D 2,2., D3,3 , and D4 4) the matrix

value will be zero since the corresponding d,, are all zero.

An examination of the matrix would suggest a first to last

ordering of tools with the most extreme outliers as follows:

NASTEC, POSE, Excelerator, and DECdesign.

POSE DECdsaq EKoWBW NASTEC

POSE 0.0 as 07 00

DECdumlgn 0.5 0.0 OA 0.0

Exroeiuf OA 0.7 0.0 1.

NASTEC O 0. O 0.0

Figure 5.4 Matrix D Used to Determine
Outliers

This step is important in that it prevents very low

performance of a CASE tool set on one criterion from being

overlooked as a result of very good performance on most of the

other criteria.

5-12

Overall Magnitude of Superiority. In this step, the

collective overall magnitude to which the ratings of tool set

i are superior to tool set j is calculated. The larger and

more frequent the positive differences between the average

ratings assigned to the ith and jth tool sets, the more likely

it is that tool i is superior to tool j. To measure this,

M(IXl) = [MJ was computed using previous calculations where

M, =[F(aik-ak)/Is,, I]/Z, i=1,...,1, j=l 1 and k=l n

M.) is the sum of the differences of the ratings assigned to

tool sets i and j, divided by the magnitude corresponding s1 ,

the set of superior criteria' ratings. This value is then

divided by Z, the difference of the maximum and minimum

criteria support ratings received by all the CASE tool sets.

The results of these computations are presented in Figure 5.5.

PM DEdssvn ExmWor NASTEC

POME 0A 0.16 0.0 0.44

DECdmWgn 0n 0.0 029 0.57

E=WIu .or 0.0 0.U 0.0 OA2

ASTEC -7 -1&9 -13A 0.

Figure 5.5 Matrix M Used to Determine
Overall Magnitude of Superiority

5-13

The results suggest that the cumulative magnitude of

criteria ratings of DECdesign (0.29 when compared to POSE)

exceeds POSE (0.15 when compared to DECdesign), indicating

that in this step, DECdesign is the superior tool. An

examination of the matrix would suggest a best to worst

ordering of the tools as follows: DECdesign, POSE,

Excelerator, and NASTEC (the same ordering suggested when

examining Matrix F). Again, this matrix alone does not

consider all factors when ranking the tool sets. Further

calculations are required to determine this ranking.

Pairwise Ratings. In this step, the contents of matrices

F, D, and M are used to derive pairwise ratings of the CASE

tool sets being considered. To accomplish this, a matrix

PIx) = [P 10 is defined where

1, if F, T,, M, ! Tm, and D,, T,

P= 0, otherwise, i = 1....1, j =

P'3 = 1 indicates that tool set i is superior to tool set j.

The value of P~, is 1 if the frequency of important attribute

value in the corresponding F location is greater than or equal

to the threshold value T,, the overall magnitude of

superiority value in the corresponding M location is greater

than or equal to the threshold value T., and the single

outlier value in the corresponding D location is less than or

equal to the threshold value Td. The threshold values T., T.,

and Td are determined by the user. For the purpose of this

5-14

research, the values used were the same as those used in

Anderson's example, T,, = 0.5, Tm = 0.05, and T, = 0.5. Using

the previously calculated values of S, D, and M, Matrix P is

constructed and presented in Figure 5.6. The 1 and 0 values

received by each tool are used in the final step of

calculating Kendall scores to rank the tool sets. The more 1

values received by a tool set when compared to another tool

set, the better its overall ranking. Total values will be

calculated by summing the values in a row of the matrix.

POSE DEC49gn Exw'alor NASTEC

POSE 0.0 0.0 0.0 0.0

DEaCdn n 1.0 0.0 1.0 1.0

Excml ,' 0.0 0.0 0.0 0.0

NASTEC 0.0 0.0 0.0 0.0

Mf P

Figure 5.6 Matrix P Used to Rank CASE
Tool Sets

Kendall Scores. The contents of matrix P are then used to

rank order the tool sets. This was accomplished by computing

the Kendall scores, K,, for the tool sets where

Kj - I Pj-I The tool set with the largest Kendall score is

considered to be ranked first among tool sets evaluated

whereas the tool with the lowest Kendall score is ranked last.

5-15

Calculating K,, K, = 0, K2 = 3, K3 = 0, and K4 = 0 indicating

that DECdesign is ranked first among the rated tools, which

all tie for last. In the event of a tie, the final step of

Anderson's methodology would be executed. This would involve

creating a submatrix of Pij consisting of the rows and columns

of the tool set that are tied, then recalculating Kendall

scores for that submatrix. If the tie is not broken, the user

would randomly assign a rank to one of the tied tool sets and

recalculate for any remaining ties. This process would be

repeated until no ties are left.

The methodology can now be executed using the results of

the novice evaluations. A detailed, step by step explanation

of the methodology is not required since this was accomplished

using the results of the expert evaluations. The resulting

matrices are presented and their contents examined.

The s,, and Is,l values are calculated and presented in

Table 5.6 and Table 5.7 respectively. The d,) values are

presented in Table 5.8. Z is calculated to be Z = 9.5 - 2.7

=6.8.

Executing the first step of the methodology produces F(Ixj)

where F(1 ,) = F(3Y]). This matrix is presented in Figure 5.7.

An examination of the matrix would suggest a best to last

ordering of the tools considered as follows: DECdesign,

ObjectMaker, and POSE.

5-16

Table 5.6 Sets of Superior or Equivalent Ratings (Novice)

sI = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}

S12 = I)

S13 = [9,13)

S2 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,171

S22 = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,171

S23 = (1,2,3,4,5,6,7,8,9,10,11,13,151

S31= 1,2,3,4,5,6,7,8,10,11,12,14,15,16,171

S 32 (1,12,14,16,171

s3 = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,171

Table 5.7 Magnitude of Superior Rating Sets (Novice)

I ilI= 17 1s2 1 1 = 17 1s311 = 15

1 S121 = 0) IS22 1I = 17 1IS321 = 5

IS1, I = 2 sq231 = 13 1S331 = 17

Table 5.8 Maximum Criteria Differences (Novice)

d~l = 0 d n = 0 d 3 l = -1.6

d12 = -5.9 d22 = 0 d 32 = -6

dj = -6.3 d 23 = -3 d 33 = 0

5-17

POSE DECdgi OMW

POSE 1.0 0.0 .12

DECdus=g 1.0 1.0 JS5

Ot~eU~ur am . 1.0

hMtk F

Figure 5.7 Matrix F Used to Determine the
Frequency of Important Ratings
(Novice)

Executing the second step of the methodology produces D(,,,,

where D1,,fl = D().) This matrix is presented in Figure 5.8.

An examination of the matrix would suggest a f irst to last

ordering of the tools with the most extreme outliers as

follows: ObjectMaker, DECdesign, and POSE.

POSE DECdsgn Otcaakw

POSE 0.0 0.0 .2

DEC@@Wn C 0.0 so

Ot"aCimr .9 A4 0.0

uik 0

Figure 5.8 Matrix D used to Determine
Outliers (Novice)

5-18

Executing the third step of the methodology produces M(1 .j)

where M1,x) = M(3x3). This matrix is presented in Figure 5.9.

An examination of the matrix would suggest a best to last

ordering of the tools considered as follows: DECdesign,

ObjectMaker, and POSE (the same as the ordering suggested when

examining matrix F in Figure 5.7).

POSE DEdst oboamnww

POSE 0.0 -72 -2

.ECd@u0 A 00 .17

o1wVASW M -.16 00

waftx M

Figure 5.9 Matrix M Used to Determine
Overall Magnitude of Superiority (Novice)

Executing the fourth step of the methodology produces the

pairwise ratings and P(lxI) where P(,xI) = P(3x3). This matrix is

presented in Figure 5.10. When the Kendall scores for each

tool are calculated (using the same threshold values as

before) DECdesign ranked first among the three tools. A tie

breaking step would have to be applied to determine the

rankings of ObjectMaker and POSE. Matrices F and M indicate

that ObjectMaker may be the superior of the two tools.

5-19

POSE DECdmIgn owsdUMmk

POSE 0.0 0. 0.0

DECdeeoi 1.0 0.0 0.0

0tjec~eowr 0.0 0.0 0.0

bhftk P

Figure 5.10 Matrix P used to Rank CASE
Tool Sets (Novice)

A re-adjustment of the threshold values and a recalculation of

the Kendall scores would serve to confirm this.

5.3 Analysis of Individual Criteria

Research question three asks, "How do the CASE tools

under consideration meet the established criteria for each?"

To answer this question, an examination of the results of both

evaluations for each tool considered was conducted. The

results of the Excelerator and NASTEC 2000 evaluations were

not considered since they were not in the group of tool sets

originally considered in the thesis effort.

The results of the novice evaluations indicate that POSE

provided a low level of support to a third of the weighted

criteria. Error Handling and Consistency were the two

criteria that received the lowest ratings, indicating that the

novice users thought the tool did not perform well in

5-20

recovering from mistakes or in correcting errors.

Documentation received a low support rating due to the lack of

documentation and manuals available to the users as opposed to

poorly written or presented documentation. The tool was given

moderate to above moderate ratings for Performance, Ease of

Use, and Learnability (which received the highest support

rating). These results indicate that novice users felt the

tool was easy to use and work with.

The results of the expert evaluation of POSE were more

favorable. Only a sixth of the support ratings assigned to

the weighted criteria fell below the moderate support level.

The expert felt that database support was non-existent and

that the tool performed poorly in relation to self

instrumentation. The expert agreed with the novice users and

assigned high support ratings to Ease of Use and Learnability.

The expert felt that the Vendor History was exemplary,

reserving the highest support rating for this criterion.

The results of the novice evaluations for DECdesign

indicated that the tool provided moderate to almost full

support for the criteria considered. These results might have

been lower overall with a larger sampling, equitable with the

sampling taken for the POSE novice evaluations. They were

consistent, however, with the evaluations performed by the

researcher on both tools, who found DECdesign to be the more

powerful of the two tool sets. Like POSE, DECdesign received

the lowest criteria support ratings for error handling and

5-21

documentation. At the time of the research effort, only a

user's manual was available. Other documentation, such as

maintenance manuals or a tutorial, had not been obtained from

DEC. This explains the moderate rating the tool received for

documentation.

The results of the expert evaluation of DECdesign were

not as favorable as the novice evaluation results. Several

ratings of weak to below moderate support were assigned to the

tool. The tool received a low rating for documentation

support for the same reasons attributed to the novice

evaluation ratings. The lowest rating was reserved for the

tool's support of the tailoring criteria, indicating that the

expert perceived that most functions of the tool were

consistent and unchangeable. A low rating was given to the

tool for support for the life cycle criteria. This was

expected as the tool does not support the later phases of the

software life cycle. Although the tool received high ratings

for its support of the general graphics criterion, it received

a less than moderate rating for its support of the specific

graphics criterion. This was also expected since the graphics

specific capabilities criterion is a comprehensive criterion

in that it includes most of the charts, diagrams and tables

that are created when utilizing the different software design

methodologies presented at AFIT.

An examination of the novice evaluation results for

ObjectMaker indicate that the tool provides almost full

5-22

support for most of the criteria considered. The lowest

criteria support ratings received were for Tailoring, Error

Handling, Consistency, and Documentation. The tool provided

above moderate support for these criteria. The rating

assigned to the Documentation criteria reflects the fact that

the documentation was not complete at the time of the

evaluation of the tool. The tool did well compared to

DECdesign and POSE when considered as a functional analysis

and design tool. The ratings received by ObjectMaker would

also be applied when comparing the tool to other object

oriented analysis and design CASE tools. The results of the

novice evaluations indicate that ObjectMaker received ratings

that were almost as good as those received by DECdesign, and

in a few cases, even better. The results also indicate that

ObjectMaker performed much better than POSE as a functionally

oriented CASE tool. A comprehensive expert evaluation of the

tool would be desirable to confirm the results of the novice

evaluations. Based on the results of the novice evaluations,

the argument could be made to replace POSE with ObjectMaker as

the CASE tool set employed by both PCE and graduate

engineering students. Three observations support this

argument. First, as already stated, initial evaluation

results indicate that ObjectMaker is an overall better choice

over POSE as a functionally oriented analysis and design tool.

Second, ObjectMaker is not only a functionally oriented tool,

it also supports object oriented analysis and design, the two

5-23

methods of software development presented at AFIT. Finally,

ObjectMaker can be executed on numerous platforms, including

PCs and SUN work stations. The purchase of a single copy of

ObjectMaker allows AFIT to duplicate as many copies of the

tool as required, on any combination of platforms desired.

Although the tool history rated moderate support, the

tool received high ratings for its support of criteria that

dealt with the vendor, DEC. These ratings were assigned after

consultation with the VMS system administrators who had

extensive dealings with DEC.

5.4 Comparison of Tool Sets

Although a comprehensive comparison of the CASE tools

under consideration was not possible when applying the results

of the evaluations to Anderson's methodology, the results were

results were more than adequate when used to examine the

methodology and provide preliminary insights into the tools

evaluated. Using these results, research question four, "How

do the tools under consideration compare, if at all, to each

other?" was addressed using Anderson's methodology. Further

comparisons of the CASE tools were conducted using the results

of the expert evaluations without applying the methodology.

The fact that there was a low sampling for the expert

evaluations was not as important as a low sampling for the

novice evaluations. The expert evaluations were designed for

experienced CASE tool users, and the questions were straight

5-24

forward as opposed to the novice evaluation questions which

queried the user for more opinionated answers.

In examining these results, DECdesign received a higher

average rating than POSE for twenty three out of the thirty

three rated criteria. In ten of these cases the weights

assigned to the criteria were high fndicating the importance

of that criteria in the opinion of the software engineering

instructors surveyed. The remaining thirteen criteria were

weighted as somewhat important by the instructors. In the ten

cases where POSE received a higher rating, seven of the ten

ratings were weighted heavily by the software engineering

instructors, while three others were weighted as more than

somewhat important, indicating that although DECdesign

received better criteria support ratings overall when compared

to POSE, POSE and DECdesign provided an equitable amount of

support for heavily weighted criteria. Considering the expert

evaluation data collectively using Anderson's evaluation

methodology, DECdesign was considered the better choice of

tools in each step and was rated as the top ranked tool.

5.6 Summary

The results of the novice and expert evaluations were

utilized to determine the performance of the CASE tool sets

under consideration. The results proved useful in

demonstrating that Anderson's methodology would be useful in

evaluating and selecting CASE tools for incorporation into the

AFIT SEE. In addition to examining the results of the

5-25

application of the methodology, individual criteria support

ratings were reviewed to further determine the worth of the

CASE tools to AFIT. Finally, a comparison of the tool sets

was made which indicated that, of the tools considered,

DECdesign best met the needs of AFIT for a structured analysis

and design tool. Again, these results are somewhat suspect

due to the low sampling of evaluators. The possibility exists

that DECdesign, ObjectMaker, and POSE are all acceptable tool

sets, possibly being used effectively on different platforms.

The final research question concerning the place, if any,

of the tools in the AFIT SEE, is addressed in the next chapter

along with recommendations concerning the SEE, the tool

evaluations, and the use of Anderson's methodology.

5-26

I
VI Conclusions and Recommendations

This chapter presents conclusions and recommendations

concerning the AFIT SEE, the CASE tools under consideration,

and the tool evaluation process are presented as well as

recommendations for future studies.

6.1 Concerning the SEE

When considering how the tools belong in the software

engineering environment at AFIT, the tools can be grouped as

those that already played some role in the AFIT SEE and those

that did not. DECdesign and POSE, the functional analysis and

design tools evaluated, were already incorporated into the SEE

while ObjectMaker, the object oriented tool, was not.

DECdesign is part of an automated tool set provided by

DEC to AFIT under contract. What is lacking is documentation

to support the tool in the form of user's manuals, maintenance

manuals, and interface manuals. To acquire these would

require funding from AFIT. Although the documentation would

be inexpensive when compared to the cost of the tool itself,

there is no need to purchase these manuals. The researcher

was able to obtain a tape cartridge of the user's manual from

the vendor. From this tape the systems administrator was able

to generate a hard copy of the manual which was utilized

during the evaluation process. To encourage use of DECdesign

by AFIT students and staff, it is recommended that a condensed

version of the user's manual be drafted which would be

6-1

concerned with those functions of DECdesign that would support

the requirements of the AFIT software engineering curriculum.

DECdesign supports Yourdon's method for functionally oriented

analysis and design of software systems, a method presented at

AFIT, and is available to the students and staff. DECdesign

also needs to be made available to as many students and staff

as possible. Digital has developed a package that will allow

DECdesign to execute in the X-windows environment. This

package should be obtained and utilized.

POSE has also been incorporated into the AFIT SEE. The

tool is utilized in the PCE software engineering short courses

and has seen use in the School of Logistics as well. As seen

in chapter five, a reasonable sampling of novice evaluations

indicated that POSE received moderate to above moderate

ratings for heavily weighted AFIT CASE tool support criteria.

Like DECdesign, POSE supports Yourdon's method. POSE also has

a voluminous user's manual that is time consuming to become

familiarized with. As with DECdesign, it is recommended that

a condensed user's manual be drafted for use by software

engineering graduate students. Also, more copies of the tool

set need to be obtained for use by AFIT students. The

potential for the expansion of the role of POSE in the AFIT

SEE exists. The tools could be used by software engineering

graduate students to support functionally oriented analysis

and design projects. The initial indications are that both

tools will be ureful.

6-2

DECdesign and POSE are just two of a number of

functionally oriented CASE tools that exist in the AFIT SEE

(others are Excelerator and NASTEC 2000, two tools which did

not perform nearly as well in the evaluations). What is

lacking in the SEE are tools that support the second major

software development methodology presented at AFTT, object

oriented tools. Although it was not possible to conduct a

thorough evaluation of ObjectMaker, the tool shows potential

to become a part of the AFIT SEE. ObjectMaker is one of the

few tools available that supports a number of object oriented

analysis and design methods, including those presented at

AFIT, such as Coad diagrams and Buhr diagrams. As previously

indicated, the tool can be executed on several different types

of platforms. Only one copy of the tool must be purchased by

AFIT. As many additional copies as required can then be

generated. In addition, the tool provides support for the

implementation stage of the software systems life cycle. The

user can create Buhr diagrams which the tool will transform to

outlined Ada packages. The need exists for an object oriented

tool in the AFIT SEE. It is recommended that a list of

candidate object oriented tools be compiled and that these

tools be evaluated using Anderson's methodology to determine

which tool would best fit into the SEE. Preliminary results

seem to indicate ObjectMaker will be worth trying. This would

help AFIT obtain more data upon which to base a decision of

whether or not to keep POSE or replace it with ObjectMaker (as

6-3

discussed in chapter 5). Of course, other object oriented

tools should be evaluated, but perhaps it would be most useful

to identify candidates that use other than PC platforms. It

is also recommended that a comparison of POSE and ObjectMaker

be performed since both tools share the same platform.

Concerning the SEE, a major concern has already been

addressed in this chapter, the need for object oriented CASE

tools. If staff and students are to use CASE tools to support

various software engineering projects, tools must be available

that support the major software development methodologies

presented at AFIT. The defined SEE should be monitored and

periodically evaluated to insure that the environment

continues to provide the support required at AFIT. This is

necessary due to the evolving nature of any SEE.

1'r nYrnini, Anierson s Methodology

The question might be posed "If tne CASE tools already

exist in the AFIT SEE, why evaluate them?" The answer is the

need to establish a baseline ratings matrix with which to rate

and compare all candidate tools. Anderson's methodology

provides a means of determining the important attributes of a

CASE tool being considered for use at AFIT and then rating the

candidate tool against existing tools as well as other

candidate tools. More importantly, the methodology provides

a measurable means of determining if a candidate tool should

be incorporated into the AFIT SEE. Conversely, it can also be

used to determine if existing tool sets can be replaced by

6-4

superior tools. For example, an examination into the worth of

the NASTEC 2000 and Excelerator CASE tools as continuing

components of the AFIT SEE may be desirable.

The rating matrix created as a result of applying the

methodology would be modified each time evaluations were

performed on candidate tools. The matrix would then continue

to grow as each new tool is evaluated. Separate ratings

matrices should be created for CASE tools dependant on the

methodology they support, i.e. a ratings matrix for

functionally oriented CASE tools and a ratings matrices for

object oriented CASE tools. Different matrices should also be

created for CASE tools dependant on the various stages of the

software systems life cycle supported by a tool, i.e. a

ratings matrix for Upper Case tools and a matrix for Lower

CASE tools. Two versions of the aforementioned matrices

should be created, one reflecting the results of novice

evaluations and one reflecting the results of expert

evaluations. These matrices would provide a variety of

results from which to select a candidate tool.

As the software engineering instruction staff and

academic requirements for software engineering students

change, the weights assigned to the CASE tool performance

criteria should be recalculated. This will keep the ratings

matrix current with the reflected views of the current

instructing staff. It is recommended that an acceptable

sampling of evaluations of existing CASE tools be conducted so

6-5

that baseline ratings matrices can be established. This would

include Upper and Lower CASE tool ratings matrices and

functionally oriented and object oriented CASE tool matrices

with novice and expert versions of each. Any student or staff

member tasked with evaluating candidate tools could then apply

Anderson's methodology using the pre-established matrices to

determine the tool's worth.

6.3 Concerning the Evaluations

As they exist, the expert and novice evaluations used to

provide the CASE tool criteria support ratings required to

implement Anderson's methodology are quite comprehensive. A

large number of criteria are examined for the purpose of

performing as thorough an evaluation as possible of the tools

under consideration. Although this is an extensive list of

criteria, it may not be complete. AFIT software engineering

instructors should be polled "-riodically to determine the

completeness of the criteria list as well as the worth of each

individual criterion. The grouping of the criteria in the

evaluations should also be examined to determine if the

criteria might be better categorized (i.e. the establishment

of a security criterion or a grouping of methodology support

by specific methodologies). Both expert and novice

evaluations should be maintained to account for the opinions

of users with varying levels of CASE tool experience. These

evaluations should be used to establish the baseline ratings

6-6

matrices, as well as any future modifications to those

matrices.

6.4 Summary

This thesis identified the SEE as it exists at the AFIT

School of Engineering. Recommendations to improve the SEE

were made, including the suggestion that object oriented CASE

tools be incorporated into the SEE at the tool support layer.

A CASE tool evaluation methodology was presented that provides

a measurable means of rating existing and candidate CASE tools

for incorporation into the AFIT SEE. It was recommended that

a collection of ratings matrices be developed and maintained

based on the category of the CASE tools, the software

development method the tools support, and the level of

expertise of the CASE tool evaluator. Criteria to evaluate

CASE tools for use in the AFIT SEE were established and

weighted based on individual criterion importance. CASE tools

under consideration were rated on how well they supported

these criteria by both expert and novice evaluators. It was

recommended that the criteria and evaluations be reviewed and

updated as required.

6-7

Appendix A: Description of Evaluated CASE Tools

The following descriptions of DECdesign, POSE, and

ObjectMaker were extracted from the user's manuals

provided with the tools.

DECdesign

DECdesign is a CASE tool developed by Digital. The

purpose of DECdesign is to provide a Digital-developed

graphics environment for analyzing, designing,

prototyping, and automatically generating applications.

DECdesign supports three of Digital's major application

development programs: CASE, database systems, and

transaction processing.

DECdesign is a VMS-based DECwindows environment for

the graphical analysis and design of applications of any

size and complexity. It is the first phase of the

DECdesign program.

DECdesign features include:

Integrated process, data, and real-time modelling
support based upon Yourdon, Gane & Sarson's,
Extended Entity Relationship and Ward-Mellor
techniques.

Validation - DECdesign automatically checks the
syntactical and semantical design errors of the
analysis and design effort.

Version control - Multiple versions of analysis and
design models are supported.

Data sharing - Teams of users can have ready access
to all the latest designs and design changes.

A.1

Load/extract capability - The tool allows designs
to be shared across multiple projects and systems.

Single database - All analysis and design
information is in one location to simplify
maintenance and reuse of data.

CDD/Plus Repository integration - Provides
capability to reuse data definitions (stored in
CDD/Plus) from different applications and provides
updates to or from CDD/Plus repository when changes
occur in either DECdesign or CDD/Plus.

Reports - The tool provides extensive reporting of
information captured during analysis and design.

Client/server support - Analysis and design models
can be shared among networked workstations allowing
better CPU utilization.

Online training - The tool provides interactive
online product training.

DECdesign also has the capability to integrate with

LSE/SCA's Program Design Facility. Information can be

shared between DECdesign windows and LSE/PDF windows.

Picture Oriented Software Engineering Tool Set

Picture Oriented Software Engineering (POSE) is a

CASE tool developed by Computer Systems Advisors INC.,

and was designed with three main functions in mind. They

are information systems planning, business area analysis,

and systems design (using functional design techniques).

POSE is composed of ten separate modules. Each module is

a stand alone module and can be invoked by using a mouse

to select the icon for that module from a main selection

screen. A description of each module is as follows:

A.2

Data Model Diagrammer (DMD) - POSE-DMD allows the
user to graphically represent (by means of entity
relationship diagrams) any business system under
study in the form of a data model. After data
about the business is captured in ERDs and
descriptive forms, (data dictionaries), POSE-DMD
analyzes the data to determine the existence of
foreign keys and redundant attributes, and
generates all possible associations implied by the
data.

Data Model Normalizer (DMN) - POSE-DMN allows the
user to normalize the data attributes of the data
model created in DMD. It removes repeating groups,
removes partial dependencies, and then removes
indirect dependencies.

Logical Database Design (LDD) - POSE-LDD allows
the user to define a transaction, its data access
and frequency. LDD analyzes the load on various
transactions and their access paths so as to
optimize the logical database design. It enables
the user to make better decisions when transforming
a data model into a logical database design.

Data Base Aid (DBA) - POSE-DBA allows the user to
select the logical data model that has been
captured in POSE-DMD and translate it into a
physical design of the target Database Management
System (DBMS) under the DBA system.

Data Flow Diagrammer (DFD) - POSE-DFD lets a user
design a system in terms of its processes and data
flows. It adopts the diagramming convention of the
Gane and Sarson methodology.

Structure Chart Diagrammer (SCD) - POSE-SCD allows
the user to represent the hierarchy of the program
modules and interfaces between the modules and
interfaces between the modules in the form of a
structure chart. SCD performs consistency checks
(with respect to the Yourdon and Constantine
Technique) that assists the user in producing a
program design with weak coupling and strong
cohesion.

Decomposition Diagrammer - (DCD) - POSE-DCD allows
the user to create decomposition diagrams, a chart
that is used to show functional breakdowns. The
three categories of functional decomposition are
process decomposition, work breakdown structure,
and organizational charts.

A.3

A 4

Action Chart Diagrammer (ACD) - POSE-ACD enables
systems designers to draw action diagrams which can
be used to depict program overviews and detailed
logic. (Pseudo code and structured english).

Screen Report Prototyper (SRP) - POSE-SRP allows
the user to design and develop data entry and menu
selection screens as well as reports for a
particular application. Planning Matrix
Diagrammer (PMD) - POSE-PMD is a matrix tool that
allows the user to document and diagram the
relationship between two classes of data in the
form of a matrix.

The user can use POSE for the Information Systems

Planning phase by using PMD and DCD to identify the

objectives and strategies of the organization by defining

the functions that must be performed and their

relationships. Then, DMD and DFD are used to create high

level data and process architectures that will support

the organizations objectives.

In the Business Area Analysis phase, DMD, DFD, and

DMN are used to refine high-level architecture of the

system. For data, DMD is used to further analyze

information requirements, analyze current data, and

decompose global data requirements into business area

models. DMN will develop a normalized business area data

model. DFD will be used to analyze the flow of

information and reduce the complexity by creating

multiple-level data flow diagrams. PMD will be used to

define and describe the relationships which exist between

data and processes, and SRP will be used to construct a

prototype of the system.

A.4

For Systems Design, the data model created from the

business area analysis is used to create the logical and

physical designs of the system. SCD is used to design

program structures and ACD will turn those structures

into complete program specifications ready for

implementation.

ObjectMaker

ObjectMaker, an analysis and design CASE tool set

developed by Mark V Systems, offers the following

functionality:

- Object oriented analysis
- Structured analysis
- Behavioral (state) analysis
- Forms entries for each supported analysis method
- Summary table views for each analysis method
- Object oriented design
- Structured design
- Behavioral (state) design
- Forms entries for each supported design method
- Summary table views for each design method
- A common semantic repository linking all methods
- Ada, C++ and C code generation from detailed
design diagrams

- Reverse engineering from Ada, C++ or C source code
- Diagram export support for popular publishing
software including Word Perfect and Microsoft Word

The tool provides off-the-shelf support for over

twenty analysis and design methods and notations, both

object oriented and traditional, including:

ADARTS Coad-Yourdan Hatley-Pirbhai
Bailin Colbert Martin
Berard Constantine Shlaer-Mellor
Booch86 DeMarco SPS
Booch9l Firesmith Ward-Mellor
Buhr84 Gane-Sarson Yourdon
Buhr90 GE R-Nets
Chen Harel F-Nets

A.5

ObjectMaker incorporates an externalized rules-based

architecture that allows users to easily adapt this tool

to individual, project and corporate requirements. The

ObjectMaker Tool Development Kit provides extension

language programming which may be used to:

- Modify menus and accelerator Keys
- Modify existing method rules and notations
- Create custom methods including rules and semantic
mapping

- Modify or create forms entries to the semantic
repository

- Develop custom text generation from diagram
routines

- Develop custom code generation directly from
diagrams

- Map ObjectMaker to an external framework or
environment

The Tool Development kit lets the user build a custom

tool.

ObjectMaker operates within three graphical user

interfaces; Microsoft Windows 3.0, X-Windows R11.4 and

the Macintosh. Specifically, ObjectMaker runs on the IBM

(or compatible) 286, 386, and 486 platforms and the Apple

Macintosh. In the workstation class of systems,

ObjectMaker has been ported to DEC (VMS and ULTRIX),

APOLLO, Data General, Evans and Sutherland, IBM RS6000,

MIPS, and Sun Microsystems. Distributed environments are

supported via TCP/IP.

In addition to a mouse pointing device (or

compatible alternative), Object Maker typically requires

the following memory and hard disk storage:

A.6

Operating system CPU memory Hard disk space

Microsoft Windows 2 Mbytes 5 Mbytes
Macintosh 4 Mbytes 5 Mbytes
X-Windows 8 Mbytes 10 Mbytes

A.7

Appendix B: Criteria Description

The following is a description of the criteria used to

evaluate the CASE tools under consideration:

Tailoring: Refers to the extent to which the user interface
of the program may be altered to conform to the preferences of
the user.

Intelligence/Helpfulness: Refers to a tool's capability to
perform functions without the user having to directly specify
their initiation, as well as anticipating the user's
interaction by providing simple and efficient means for
executing functions the user requires.

Graphics - General Capabilities: Refers to a tool's ability
to support general interface and output graphics functions
required by the user.

Graphics - Specific Capabilities: Refers to a tool's ability
to provide graphics functions which support specific software
development methodologies as required by the user.

Predictability: Refers to a tool's ability to respond to the
user with command names that suggest function.

Error Handling: Refers to a tool's capability to be tolerant
of user errors as well as the ability to check for and correct
these errors.

System/Human Interface: Refers to a tool's capability to
interact with one user, many users, or other tools.

Tool Understanding: The extent to which a tool understands
the inner structure of objects the tools manipulates as well
as the structures content, and the ability of the tool to
handle more detailed or more general aspects of that
structure.

Tool Leverage: The extent to which small actions by the user
create large effects. The ability of the tool to allow user
defined macros or to define a command as an action to be
applied to a specific object so that the same command name can
have a different implementation for different objects.

Tool State: Refers to a tool's capability to remember how it
has been used in a current session or in a previous session.

B.1

Data Dictionary: Refers to a tool's ability to create,
maintain and update a data dictionary or interact with an
existing data dictionary.

Integration: Refers to a tool's ability to be an integrated
part of a SEE.

Performance: Refers to a tool's ability to function
efficiently and be responsive to the user.

Consistency: Refers to the consistency of a tool's operations
and performance.

Evolution: Refers to a tool's ability to evolve over time to
accommodate changing requirements, changes to the environment,
correcting detected flaws, and performance enhancements.

Fault Tolerance: Refers to a tool's ability to avoid
irreparable damage as a result of any environmental failures.

Self-Instrumented: Refers to a tool's ability to assist in
determining the cause of a problem once the symptom has been
detected.

Methodology Support - General: Refers to how well a tool
supports and automates software development methodologies.

Methodology Support - Specific: Refers to how well a tool
supports and automates specific software development
methodologies supported at the software organization.

Life Cycle Support: Refers to how well a tool supports and
automates the different stages of the software systems lifecycle.

Correctness: Refers to a tool's ability to operate correctly
and produce correct output.

Ease of Use: Refers to a tool's ability to provide user
friendly functions and actions.

Learnability: Refers to a tool's ability to provide a command
set that is consistent and understandable, as well as the
tool's ability to interact with the user to help learn to use
the tool properly.

Software Engineering Environment: Refers to how well a tool
fits into a SEE.

B.2

Data Base: Refers to a tool's ability to create, maintain and

update a data base or interact with an existing data base.

Tool History: Refers to a tool's track record.

Vendor History: Refers to the vendor's reputation and track
record.

Purchase, Licensing, or Rental Agreement: Refers to the legal
agreements associated with a tool.

Maintenance Agreement: Refers to the maintenance support
provided for a tool.

User's Group/User Feedback: Refers to a group that has
experience with a tool and can share information with a user.

Installation: The installation support and responsibilities
of the vendor and a user.

Training: Refers to the existence of and levels of training
provided a user by a vendor concerning a tool.

Documentation: Refers to the documentation prcvided to a user
concerning a tool.

B.3

Appendix C: Weighted Criteria for Evaluating CASE Tools

The following are the results of a survey distributed to

AFIT software engineering instructors concerning criteria for

evaluating CASE tools. Instructors were asked to assign a

numeric weight to each criterion based on their view of the

importance of that criterion in selecting CASE tools to be

incorporated into the AFIT SEE. The weight scale is a 0-10

scale with a 0 indicating the criterion was not required,

while a 10 indicated that the criterion was absolutely

required to evaluate the CASE tools under consideration. The

average of the weights assigned were then used to assist in

determining recommendations concerning these CASE tools. The

criteria and averaged weight values are presented below.

Criteria Average Weight

Tailoring 5.0

Intelligence/Helpfulness 8.4

Graphics - General Capabilities 9.0

Graphics - Specific Capabilities 9.5

Predictability 7.8

Error Handling 8.2

System/Human Interface 8.2

Tool Understanding 8.2

Tool Leverage 5.2

Tool State 3.7

C.1

Criteria Average Weight

Data Dictionary 8.8

Integration 6.4

Performance 6.0

Consistency 7.6

Evolution 7.4

Fault Tolerance 5.0

Self-Instrumented 4.6

Methodology Support - General 9.4

Methodology Support - Specific 10.0

Life Cycle Support 8.6

Correctness 9.0

Ease of Use 9.0

Learnability 9.0

Software Engineering Environment 6.2

Data Base 6.0

Tool History 6.4

Vendor History 7.6

Purchase, Licensing, or Rental Agreement 8.2

Maintenance Agreement 5.0

User's Group/User Feedback 3.8

Installation 5.8

Training 6.2

Documentation 9.2

C.2

Appendix D: Evaluations for CASE Tools

This appendix contains examples of the evaluations used

by both expert and novice CASE tool evaluators. The

evaluations contain criteria used to evaluate the tools,

guidelines to consider when determining the level of support

given to the criterion by the CASE tool, and a support rating

scale for each criterion.

CASE Tool Evaluation (Expert)

Tailoring

1) Various aspects of the interface can be tailored to suit
the user's needs, including application and ability level.

2) The user can turn off unwanted functions that may be
obtrusive.

3) The tool's capabilities can be expanded to allow for new
functions.

4) The tool's input and output formats can be redefined by the
user.

5) Tailoring operations can be controlled to maintain
consistency within the using project.

6) The tool can be configured by the user for different
resource tradeoffs to optimize such things as response speed,
disk storage space, and memory utilization.

Rating Scale

0 1 2 3 4 5 6 7 8 9 10

Intelligence/Helpfulness

1) The tool is interactive.

2) The tool prompts for command parameters.

D.1

3) The tool prompts for complete command strings.

4) The tool checks for command errors.

5) Action initiation and control is left with the user.

6) Quick and meaningful feedback on the system status and
progress of interaction and execution is given the user.

Rating Scale

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Graphics - General Capabilities

1) The tool provides the capability to produce hard copy
output of diagrams or views created by the user.

2) The objects defined in a diagram are decomposable to as
many levels of depth as needed to reach the lowest level
process.

3) The tool provides graphics functions such as copy, move,
enlarge/shrink, delete/undelete, and zoom in/out for
operations on objects.

4) The tool provides the capability to combine or decompose
diagrams.

5) The interface is simplified by the use of sound or
graphics.

6) The interface includes graphical icons with shape and
texture.

7) The interface includes the ability to color code graphical
representations.

8) The user can access and retrieve stored information quickly
and with little effort while using the system.

9) The tool provides the capability to graphically create user
defined symbols.

Rating Scale

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

D.2

Graphics - Specific Capabilities

1) The tool provides the capability to graphically create data
flow diagrams.

2) The tool provides the capability to graphically create
entity relationship diagrams.

3) The tool provides the capability to graphically create
object oriented diagrams (Coad, Booch).

4) The tool provides the capability to graphically create
structure charts.

5) The tool provides the capability to graphically create
Petri nets.

6) The tool provides the capability to graphically create
state transition tables.

7) The tool provides the capability to graphically create
control flow diagrams.

8) The tool provides the capability to graphically create flow
charts.

9) The tool provides the capability to graphically create Ada
package dependency programs.

10) The tool provides the capability to graphically create
state transition tables.

11) The tool provides the capability to graphically create
object hierarchy or tree diagrams.

12) The tool provides the capability to graphically create
block diagrams.

13) The tool provides the capability to graphically create
object interaction diagrams.

14) The tool provides the capability to graphically create
concept maps.

15) The tool provides the capability to graphically create
context diagrams.

D.3

16) The tool provides the capability to graphically create
structure diagrams.

Rating Scale

I I I I I t I I I I I
0 1 2 3 4 5 6 7 8 9 10

Predictability

1) Responses from the tool are expected in most cases.

2) It is possible to predict the response of the tool to
different types of error conditions.

Rating Scale

I I t l I t I I l I I
0 1 2 3 4 5 6 7 8 9 10

Error Handling

1) The tool recovers from errors easily.

2) The tool has mechanisms that protect the user from costly
errors.

3) The tool executes periodic saves of intermediate objects to
ensure that all work is not lost if a failure occurs during a
long session with the tool.

4) The tool protects against damage to its database caused by
inadvertent execution of the tool.

5) The tool helps the user correct errors.

6) The tool checks for application specific errors.

Rating Scale

I I i I I I I I t I l
0 1 2 3 4 5 6 7 8 9 10

D.4

I

System/Human Interface

1) The tool is designed to be used by more than one person at
a time.

2) The tool provides for management of work products for
single and multiple users.

3) The tool prevents unauthorized access to or modifications
of data.

4) The tool provides easy to use menus.

5) The tool allows experienced users to bypass menus.

6) The tool allows use of a mouse or keyboard.

7) The tool provides split screen/window capability.

8) The tool provides undo capabilities.

9) External files can be excepted as input.

10) External files can be produced for outside use.

Rating Scale

i I I I I I i I I I I
0 1 2 3 4 5 6 7 8 9 10

Tool Understanding

1) The tool operates on objects at different levels of
abstraction or at different levels of detail.

2) The tool can modify collections of objects so as to
preserve relationships between them.

3) The tool can remove objects and repair the structure.

4) The tool can insert objects with proper changes to the
structure.

5) The tool will perform validation of objects or structures.

D.5

6) The tool will perform consistency checks between levels of

detail.

Rating Scale

I I I I I i i I I I I
0 1 2 3 4 5 6 7 8 9 10

Tool Leverage

1) Commands can be bound to specific object types or structure
templates.

2) Commands can be applied systematically to entire
collections of similar objects.

Rating Scale

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Tool State

1) The tool keeps a command history.

2) Commands can be reinvoked from the history.

3) The command history can be saved to be used with a new run
of the tool.

4) Reinvoked command histories can be modified.

5) The current state of the tool and the objects it is
manipulating can be saved.

6) The saved state of the tool and the objects it is
manipulating can be restored.

7) The tool will keep state across invocations.

Rating Scale

l l l I I I I I t i I
0 1 2 3 4 5 6 7 8 9 10

Data Dictionary

1) The Tool dictionary is automatically updated from the
design.

D.6

2) The tool automatically validates dictionary and design.

3) Unneeded entries can be deleted from the data dictionary.

4) A rename capability exists that will rename data
definitions as well as all references to that structure in
diagrams and other structures.

5) Data descriptions can be created to describe in detail in
textual form, each data structure and data element.

6) The data dictionary can interface to a host data
dictionary.

Rating Scale

i I i i i I I I I I
0 1 2 3 4 5 6 7 8 9 10

Integration

1) The tool has an effective interface to other CASE tools in
the AFIT SEE or under consideration.

2) The tool integrates easily into the AFIT SEE.

3) The interface is compatible with other tools in a set or
other commercially available tools.

Rating Scale

I I I I i I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Performance

1) The tool will keep and/or employ statistics of command
frequency and operand history.

2) The tool's response time to commands will be acceptable
relative to the complexity of the operations performed by the
command.

3) A tool supporting multiple users will have a response and
command execution time acceptable with the maximum load of
users.

D.7

4) When the tool is running on the user's hardware it will
handle a development task of the size required by the user.

5) The tool provides a mechanism to dispose of useless
byproducts it creates.

6) The tool provides a means of prototyping.

Rating Scale

I I I I i I I I I i I
0 1 2 3 4 5 6 7 8 9 10

Consistency

1) The tool has well defined syntax and semantics.

2) The output of the tool can be archived and selectively
retrieved and accessed.

3) The tool can operate in a system with a unique
identification for each object.

4) The tool can re-derive a deleted unique object.

5) The tool checks for the existence of an object prior to
rederivation of the object.

Rating Scale

i I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Evolution

1) The tool is built in such a way that it can evolve and
retain compatibility between versions.

2) The tool smoothly accommodates to changes in the
environment in which it operates.

3) New versions of the tool will interface with old versions
of other related tools.

4) New versions of the tools will operate correctly on old
versions of target objects.

D.8

5) Old versions of the tool will operate correctly on new
versions of the target objects.

6) Separate versions of the tool can coexist operationally on

the system.

7) The tool can be implemented on various hosts.

8) The tool can be ported to various hosts.

9) The tools output can be interchanged between hosts.

Rating Scale

t I I I I I I I t I
0 1 2 3 4 5 6 7 8 9 10

Fault Tolerance

1) The tool has a well defined atomicity of action.

2) When the tool is found to be incorrect, the system can be
rolled back to remove the effects of the incorrect actions.

Rating Scale

I i I I I I I i I i i
0 1 2 3 4 5 6 7 8 9 10

Self-Instrumented

1) The tool contains instrumentation to allow for ease of
debugging.

2) Other tools exist for analyzing the results collected by
the instrumentation.

3) The tool contains self-test mechanisms to insure that it is

'working properly.

4) The tool records, maintains, and employs failure records.

Rating Scale

I I I l I I I i I I I
0 1 2 3 4 5 6 7 8 9 10

D.9

Methodology Support - General

1) The tool supports numerous methodologies to meet the users
needs.

2) The tool provides a means to integrate other methodologies.

3) The tool supports all aspects of the methodology employed.

4) When aspects are excluded, the important parts or concepts
of the methodology are supported.

5) The tool supports the communication mechanisms of the
methodology without alteration.

6) The tool builds in functionality, in addition to the direct
support of the methodology, that is useful.

7) The tool is free of functionality that is useless or a
hir. Irance.

8) The tool's flexibility supports the methodology, allowing
the user to initially skip or exclude some parts of the
methodology and return to it later.

9) The tool provides an adequate scheme to store, organize,
and manipulate the products of the application of the
methodology.

10) The tool provides guidance to ensure that the concepts of
the methodology are followed when using the tool.

Rating Scale

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Methodology Support - Specific

1) The tool supports an object oriented methodology.

2) The tool supports a functionally oriented methodology.

3) The tool supports a data oriented methodology.

4) The tool supports real-time structured development.

5) The tool supports entity relationship modeling.

6) The tool supports Petri nets.

D.10

7) The tool supports state charts.

8) The tool supports DARTS.

9) The tool supports ADARTS.

10) The tool supports entity relationship rules.

11) The tool supports automatic data flow balancing.

Rating Scale

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Life Cycle Support

1) The tool supports the requirements definition and analysis
stage of the software system life cycle.

2) The tool supports the design stage of the software system
life cycle.

3) The tool supports the implementation stage of the software

system life cycle.

4) The tool allows for the generation of Ada code.

5) The tool supports management functions of the software
system life cycle.

Rating Scale

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Correctness

1) The tool generates output that is consistent with what is
dictated by the methodology.

2) The tool checks to see if the methodology is being executed
correctly.

3) The tool will not unintentionally or unexpectedly alter
data items entered by the user.

4) Outputs generated by the tool are correct by all standards.

D.1

5) Transformations generated by the computer will always

generate correct results.

Rating Scale

I I I i i I I I i I I
0 1 2 3 4 5 6 7 8 9 10

Ease of Use

1) The tool simplifies a problem rather than complicates it.

2) Command names suggest function or graphical symbols
representative of function.

3) Commands and command sequences are consistent througheut
the system.

4) The user can do something quickly to see what happens and
evaluate results without a long set-up process.

5) Results and produced work products of learning exercises
can be disposed of easily without intervention of a second
party, i.e. database administrator.

6) The tool pro:ides a small number of functions that allow
the user to do the work the tool is intended to do.

7) The tool provides the user with templates or other aids to
guide interaction.

Rating Scale

I I I I I I I I I i I
0 1 2 3 4 5 6 7 8 9 10

Learnability

1) Prospective tool users require a background necessary to
use the tool.

2) A user can use the tool without memorizing an inordinate
number of commands.

3) The tool is based on a small number of easy to
understand/learn concepts that are clearly explained.

D.12

4) The user can learn a small number of simple commands
initially, and gradually add more advanced commands as
proficiency is developed.

5) The time required to understand and become proficient is
acceptable for the average user.

6) A tutorial is provided with the tool.

7) On line help is available with the tool.

8) Expert mode exists for the experienced user.

Rating Scale

I i i I i I I i i iI
0 1 2 3 4 5 6 7 8 9 10

Software Engineering Environment

1) The tool is in some ways similar to what AFIT currently
does and knows, there is a commonality in the underlying
method, process, vocabulary, and notation.

2) The command set is free of conflict with the command set of
other tools AFIT uses.

3) The tool runs on the hardware/operating system AFIT

currently uses.

4) Installing the tool is a simple, straightforward process.

5) The tool uses file structures/databases similar to those
currently in use at AFIT.

6) The data can be interchanged between the tool and other
tools currently employed by AFIT.

7) The tool can be cost-effectively supported by those
responsible for maintaining the environment.

Rating Scale

I I i I i i i I I I I
0 1 2 3 4 5 6 7 8 9 10

Data Base

1) The tool creates a data base that can be used by other
tools.

D.13

2) The tool can access an existing central data base.

Rating Scale

i i I i I i i I i i I
0 1 2 3 4 5 6 7 8 9 10

Tool History

1) The tool has a history that indicates it is sound and

mature.

2) The tool has been applied in a relevant application domain.

3) A complete list of all users that have purchased the tool
is available.

4) It is possible to obtain evaluations of the tool from a
group of users.

Rating Scale

I I I I I I I I I I i
0 1 2 3 4 5 6 7 8 9 10

Vendor History

1) There is a staff dedicated to user support.

2) The vendor has a reputation for living up to commitments
and promises.

3) Future projections of the company are promising.

Rating Scale

i i I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Purchase, Licensing, or Rental Agreement

1) The contract or agreement is explicit enough so that the
customer knows what is or is not being acquired.

2) There is a cost reduction for the purchase of multiple
copies.

D.14

3) A corporate site license is available.

4) The user can return the tool for a full refund during some
well defined, reasonable period of time.

5) The user is free of all obligations to the vendor regarding
use of objects generated by the tool.

6) The tool is affordable.

Rating Scale

I I I I i I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Maintenance Agreement

1) A warranty exists for the tool.

2) The user can purchase a maintenance agreement.

3) The vendor can be held liable for the malfunctioning of the
tool.

4) Maintenance agreements will be honored to the customers
satisfaction in the case that the vendors sell out.

5) The frequency of releases and/or updates to the tool will
be reasonable.

6) The maintenance agreement includes copies of releases or
updates.

7) The turn around time for problem or bug reports is
acceptable.

8) The vendor supports and assists tailoring the tool to the
specific user need.

Rating Scale

I I I I I I I I I I I
o 1 2 3 4 5 6 7 8 9 10

User's Group/User Feedback

1) A user's group exists.

D.15

2) The vendor provides a responsive, helpful hot-line service.

Rating Scale

I I I I I I I I I i I
0 1 2 3 4 5 6 7 8 9 10

Installation

1) The tool is delivered promptly as a complete package.

2) The vendor provides installation support/consultation.

3) The tool supports both a mainframe and work station
environment.

Rating Scale

i i i I I I I i I I I
0 1 2 3 4 5 6 7 8 9 10

Training

1) Training is available.

2) Prerequisite knowledge for learning and use of the tool has
been defined.

3) Training is customized for AFIT and individuals with
attention paid to the needs of different types of users.

4) Training materials or vehicles allow the user to work
independently as time permits.

5) The user is provided with examples and exercises.

6) Vendor representatives are product knowledgeable and
trained.

Rating Scale

I i I I I i I I I I I
0 1 2 3 4 5 6 7 8 9 10

Documentation

1) The tool is supported with installation manuals.

D.16

2) The tool is supported with user's manuals.

3) The tool is supported with maintenance manuals.

4) The tool is supported with interface manuals.

5) The documentation provides a description of what a tool
does before throwing the user into the details of how to use
it.

6) The documentation is readable.

7) The documentation is understandable.

8) The documentation is complete.

9) The documentation is accurate.

10) The documentation is affordable.

11) The documentation has an indexing scheme to aid the user
in finding answers to specific questions.

12) The documentation is promptly and conveniently updated to
reflect changes in the implementation of the tool.

Rating Scale

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

D.17

I.~-

CASE Tool Evaluation (Novice)

Tailoring

1) I could tailor aspects of the tool interface to suit my
needs, including application and ability level.

2) I could turn off tool functions that I didn't need.

3) I could create and add new functions to the tool.

4) I could redefine the tool's input and output formats to
suit my needs.

Rating

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Intelligence/Helpfulness

1) The tool was interactive.

2) The tool prompted me when it needed a command.

3) The tool checked for command errors.

4) I could control when and how the tool performed its job.

5) The tool gave me quick and meaningful feedback on the
system status and the progress of interaction and execution.

Rating

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Graphics

1) The tool provided me the capability to produce hard copy
output of diagrams or views I created.

2) The tool provided graphics functions such as copy, move,
enlarge/shrink, delete/undelete, and zoom in/out for
operations on objects.

3) The tool provided the capability to combine or decompose
diagrams I created.

D.18

4) The interface was simplified by the use of sound or
graphics.

5) The interface included graphical icons with shape and
texture.

6) The interface included the ability to color code graphical
representations.

7) I could access and retrieve stored information quickly and
with little effort while using the tool.

Rating

i i I I I i I i I i I
0 1 2 3 4 5 6 7 8 9 10

Predictability

1) I usually received the responses from the tool that I
expected.

2) It was possible to predict the response of the tool to
different types of error conditions.

Rating

I I I ;I i I I I I I
0 1 2 3 4 5 6 7 8 9 10

Error Handling

1) The tool recovered from errors easily.

2) The tool had mechanisms that protected me from costly
errors.

3) The tool executed periodic saves of my work to ensure that
all the work was not lost if a failure occurred during a long
session with the tool.

4) The tool protected against damage to its database.

5) The tool helped me correct errors.

Rating

I I I i I I i i I I I
0 1 2 3 4 5 6 7 8 9 10

D.19

System/Human Interface

1) More than one person at a time was able to use the tool.

2) The tool provided for management of work products for
single and multiple users.

3) The tool prevented unauthorized access to or modifications
of my data.

4) I found the menus provided easy to use.

5) The tool allowed use of a mouse.

6) The tool allowed use of a keyboard.

7) The tool provided split screen/window capability.

8) The tool provided undo capabilities.

9) I could use external files as input.

10) I could create external files for outside use.

Rating

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Tool Understanding

1) The tool operated on objects at different levels of
abstraction or at different levels of detail.

2) The tool allowed me to modify collections of objects so as
to
preserve relationships between them.

3) The tool allowed me to remove unwanted objects and repair
the structure.

4) The tool allowed me to insert objects with proper changes
to the structure.

5) The tool performed validation of objects or structures.

D.20

6) The tool performed consistency checks between levels of

detail.

Rating

tI I I I I l I I I I I
0 1 2 3 4 5 6 7 8 9 10

Tool Leverage

1) Global commands could be used on specific object types.

2) The tool applied commands systematically to entire
collections of similar objects.

Rating

I I I I l I I l I I I
0 1 2 3 4 5 6 7 8 9 10

Tool State

1) The tool provided a macro capability.

2) Macros could be modified.

3) I was able to save the current state of the tool and the
objects it was manipulating.

4) 1 was able to restore the saved state of the tool and the
objects it was manipulating.

Rating

I I i I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Data Dictionary

1) The tool dictionary was automatically updated from the

design.

2) The tool automatically validated the dictionary and design.

3) I was able to delete unneeded entries from the data
dictionary.

D.21 I

4) I was able to rename data definitions as well as all
references to that structure in diagrams and other structures.

5) I was able to create data descriptions to describe in
detail in textual form, each data structure and data element.

Rating

0 1 2 3 4 5 6 7 8 9 10

Performance

1) I found the tool's response time acceptable.

2) When the tool ran on the hardware available to me, it was
able to handle a development task of the size I required.

3) The tool provided a mechanism to dispose of useless
byproducts it creates.

Rating

i i I I I I I I I i I
0 1 2 3 4 5 6 7 8 9 10

Consistency

1) I could archive and selectively retrieved and access output
I generated using the tool.

2) The tool allowed me to undelete and delete objects.

Rating

I i I I i i i I I I i
0 1 2 3 4 5 6 7 8 9 10

Self-Instrumented

1) The tool contains aids which made debugging easy.

2) The tool contains self-test mechanisms which insured that
it worked properly.

D.22

3) The tool recorded, maintained, and employed failure
records.

Rating

I I I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Correctness

1) The tool generated output that was logically correct.

2) The tool checked to see if the methodology I used was being
executed correctly.

3) The tool did not unexpectedly alter data items I entered.

4) Transformations generated by the computer always generated

correct results.

Rating

I I i I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

Ease of Use

1) I found that the tool simplified a problem rather than
complicated it.

2) I thought the command names or graphical symbols suggested
corresponding functions.

3) I found the commands and command sequences were consistent
throughout the system.

4) I could do something quickly to see what happens and
evaluate results without a long set-up process.

5) I could easily dispose of results and produced work
products of learning exercises without intervention of a
second party, i.e. database administrator.

6) The tool provided a small number of functions that allowed
me to do the work the tool is intended to do.

Rating

I I I I I I I I I i I
0 1 2 3 4 5 6 7 8 9 10

D.23

Learnability

1) I was able to use the tool without memorizing an inordinate
number of commands.

2) I found the tool was based on a small number of easy to
understand/learn concepts that I feel were clearly explained.

3) 1 was able learn a small number of simple commands
initially, and gradually add more advanced commands as my
proficiency with the tool developed.

4) I found time required to understand and become proficient
with the tool acceptable.

5) I found the tutorial easy to use and informative.

6) I found the on line help facilities easy to understand and
useful.

Rating

I I I I I i i I I I i
0 1 2 3 4 5 6 7 8 9 10

Documentation

1) I thought the documentation provided gave a description of
what the tool does before throwing me into the details of how
to use it.

2) I found the provided documentation readable.

3) I found the provided documentation understandable.

4) I found the provided documentation complete.

5) I found the provided documentation accurate.

Rating

I I i i i I i i i I i
0 1 2 3 4 5 6 7 8 9 10

D.24

Appendix E: Test Cases for CASE Tool Evaluations

This appendix contains a description of the different

test cases used by the CASE tool evaluators during the

evaluation process.

Test Case 1: Ajax Community College Registration System

During the latter part of a quarter, each student will

review the course offerings for the upcoming quarter and make

his/her selections. The registration system will review a

student's request for courses, verify each course will be

offered during the coming quarter and that the student has

fulfilled all prerequisite requirements for each course.

(These prerequisites are maintained in the Course Catalog

database.) If space is still available in the course, the

student will be assigned to it and his/her name will be added

to the course roster. Each student will receive a schedule

listing each course and its time and meeting place. A student

roster for each course will be generated for its instructor.

In addition, a summary report is provided to each

department listing the enrollment in each of its courses as

well as the number of students denied enrollment if the course

is "filled". A record is kept of each student denied

enrollment so that if a department decides to "open"

enrollment (or add another section) those students could be

added. A report is also compiled for the President's office

which lists the number of students enrolled in each

E.1

department. This is used as a basis for allocating TA slots

to the departments.

Although in the future (when additional funds become

available), we would like to offer an "on line" or "dial-in"

registration system which the students could directly access,

at the present time we will be satisfied with a system which

uses our current mainframe computer and our registration

staff. The system must be operational for the fall term of

1992.

Test Case 2: A Spelling Checker

The spelling checker will parse an input document

extracting one word at a time. (AS it parses the document, it

displays the current document line number and word number on

the terminal.) If the word is a "non-word", the spelling

checker passes it directly to the output document. Otherwise,

the spelling checker consults the main and temporary

dictionaries. If either dictionary contains the word, the

word is written on the output document.

If neither dictionary contains the word, the spelling

checker allows the operator to either:

1 - replace the word with a word typed in from the

terminal.

2- add the word to the temporary dictionary.

3 add the word to the main dictionary.

E.2

4 - request the program to display like-spelled words in

the main and temporary dictionaries.

The word entered or accepted by the user is written to

the output document. The space available in the main and

temporary dictionaries will be continuously displayed on the

terminal. An error message will be displayed if the user

tries to add a word to a full dictionary.

E.3

Appendix F: CASE Tool Evaluation Results

The following are the results of the novice and expert

evaluations distributed to the students and instructors who

evaluated the CASE tools considered. Evaluators were asked to rate

a tool based on how well the tool supported each weighted criteria.

A rating scale of 0 - 10 was used with a 0 indicating that the tool

gave no support to the weighted criteria considered, a 5 indicating

that the tool gave moderate support, and a 10 indicating that the

tool gave full support.

Criteria Support Rating (Expert) POSE DECdesign

Tailoring 5.0 2.0

Intelligence/Helpfulness 6.0 8.0

Graphics - General Capabilities 8.0 7.0

Graphics - Specific Capabilities 6.0 4.0

Predictability 9.0 9.0

Error Handling 8.0 6.0

System/Human Interface 4.0 9.0

Tool Understanding 6.0 9.0

Tool Leverage 5.0 8.0

Tool State 4.0 6.0

Data Dictionary 5.0 8.0

Integration 3.0 9.0

Performance 5.0 5.0

Consistency 6.0 8.0

Evolution 8.0 6.0

F.1

Criteria Support Rating (Expert) POSE DECdesign

Fault Tolerance 3.0 8.0

Self-Instrumented 1.0 3.0

Methodology Support - General 7.0 9.0

Methodology Support - Specific 7.0 6.0

Life Cycle Support 6.0 4.0

Correctness 6.0 9.0

Ease of Use 8.0 9.0

Learnability 8.0 7.0

Software Engineering Environment 4.0 8.0

Data Base 0.0 8.0

Tool History 5.0 5.0

Vendor History 10.0 9.5

Purchase, Licensing, or Rental
Agreement 7.0 10.0

Maintenance Agreement 7.0 10.0

User's Group/User Feedback 5.0 9.0

Installation 7.0 10.0

Training 8.0 9.0

Documentation 8.0 3.0

Criteria Ratings (Novice Evaluations) POSE DECdesign ObjectMaker

Tailoring 3.1 6.0 6.0

Intelligence/Helpfulness 5.7 9.0 6.0

Graphics 5.6 8.0 7.0

Predictability 6.0 8.0 7.0

Error Handling 2.7 5.5 5.0

F.2

'II

Criteria RatinQs (Novice Evaluations) POSE DECdesign ObjectMaker

System/Human Interface 3.6 9.5 7.0

Tool Understanding 5.1 9.5 7.0

Tool Leverage 5.3 9.0 8.0

Tool State 6.6 7.0 6.0

Data Dictionary 3.1 7.5 7.0

Performance 6.4 9.0 8.0

Consistency 2.7 6.0 9.0

Self-Instrumented 4.6 9.0 3.0

Correctness 5.0 7.5 8.0

Ease of Use 6.1 9.5 8.0

Learnability 6.9 8.5 9.0

Documentation 3.7 5.5 7.0

F.3

Appendix G: CASE Tool Generated Reports

The following diagrams were generated using the CASE tools

evaluated as part of the thesis effort. Test case 2 was used as a

basis for the designs.

The first set of diagrams were created using DECdesign.

Yordon's methodology was utilized to create a context diagram and

data flow diagrams. These are located on pages G.2 through G.6.

Also generated are an entity relationship diagram, page G.7, and a

structure chart, page G.8.

The second set of diagrams were generated using POSE and are

the same type of diagrams which were generated using DECdesign.

The context diagram and DFDs are located on pages G.9 through G.11.

An entity relationship diagram, page G.14, and a structure chart,

G.15, were also generated.

The final set of diagrams were generated using ObjectMaker.

The context diagram and DFDs are located on pages G.16 through

G.20. An entity relationship diagram was also generated on page

G.21.

G.1

Context Diagram

Label: S ell Checker
Structure Chart: Ngass-dciated data
Predefined Attributes:

Creation Date: 10-JUL-1991 16:12:21.83
Modification Date: 9-AUG-1991 14:31:35.00

linenumbinput document

wwor

MAIN DICTIONARY TMOAYDCINR

G. 2

Data Flow Diagram

Label: Speln Checker
Structure Chart: NOascated data
Predefned Attributes:

Ceation Date: B-AUG-i1991 09:25:48.25
Modification Date: 12-AUG-1991 09:26:17.31

input-document outputdoc

nonword
arse ssemb le document

arse do3

fine num 1

word-numbecandida.tod reo nized -word

unreco
niz&4_WW6,

MAINogiz Dii rd 2wrdi
word int

word ofpwrd-i

TEMPRAR DICTIONARYf

mansavalbe pc

TEMPRARYDICTONAR

G. 3

Data Flow Diagram

Label: Parse document
Seuee Number 1
truce CWrt No associated dataPre !aneAttributesCreatn d Abt: 8-AUG-1991 09:51:20.81

Modification Date: 12-AUG-i1991 09:33:44.76

input document /oZ
lexical ana ysis ass-arci-y

candidate word

word-number

G. 4

Data Flow Diagram

Label: Recognize wordgence CNumer: 2
9cue Chr No associated data

CreafioneDatte: 8-AUG-i1991 10:09:22.20
Modification Date: 12-AUG-i1991 09:39:25.49

weord d-or

candidate-worcgaewr

reco nizd ac

Consult dictia rsy

2.1

word out
wordl_ Ut unrecognized~word

TEMPORARY DICTN~ reco nied word
MAIN DICTIONARY

G. 5

Data Flow Diagram

Label: Disposition word
gequece Numer 2.2

S utre Chartp: No associated data
Predetined Attributes:

Ceation Date: 8-AUG-1991 10:49:59.26
Modification Date: 12-AUG-i1991 10:20:43.25

~wordout rco urecognized-word

Add to m n Display like-spelled

2.2.1 word i' 22

word in
word out word out

MAIN DICTIONARY 2

______MAIN DICTIONARY TEMPORARY DIC TIONARY

fword-out
r nized-word

% ord-out eplace rd

2.2.
Add tote p

2.2. reco ed word
wrd in

MAIN DICTIONARY

G.6

Extended Entity Relationship Diagram

Label: unnamed
Predefined Attributes:

Ceation Date: 13-AUG-1991 13:33:40.85
Modification Date: 1 4-AUG-1 991 10:52:47.73

TEM RARY CTIONARY 1,1 IN DICTI NARY

DICf IONAAY NAME DICf IONAr Y NAME

K) has K

1 ,N
1,N

word in w rd oui

word word

G.7

Structure Chart

Label:SpligC
Predefined Attributes: SplngC

Creation Date: 14-AUG-1 991 11:01:08.12Modification Date: 1 9-A UG- 1991 09:A40:23.07

WIS, w.A~ T. Am T A,.

G.8

USER~nie~~

TEW

2 r~

Context Id :SPELL Level :Context

G. 9

Fart4sge t c.iiaew

I T~IP

Cont.-,ct Id :SPELL Level I

G. 10

USER ivut-dcwent C

iGi

andsdte.tr

w'v'e4snized.wod

C=zLt OiCTiO ww'e~sn tiJI

Dipitign No Pa'-j

IT"U

Context Id :SPELL Level :1.2

G. 12

asaR 3

War

Add ToMain ipia Like S

3

re~nieLM Reice Word

TEH USER UISER

Context Id :SPELL Level :1.2.2

G. 13

G. 14

G. 15

urreco(nized-wor~P me ~p d input- document

MA-INDITIOARY TEMPORARYDICTIONARY

Spelling Checker Context Diagram (ObjectMaker)

G. 16

2. 0owo uneogie0 wr

49=text_ n,text-out text- in,textQt-.

MA IN DICT IONk~qy TEMPORARY DICTIONARY

m ,.in-p e cua temp-space

availabIe-space

DFD Level 1 (ObjectMaker)

G.17

inutdcuetA IInpud cuentn nword

le ical a take
1.1 a sess_ lidity

1.3

cand idatlwz

c unt t kens
1.2

1 e number

w o number

DFD Level 1.1 (ObjectMaker)

G-18

MAIN OIGTIONAPY

candid te-word w dot wrIl ord-out

Co suit 0 tionarQ Di posit i rd d

c .r c n z e . w o 2.1g n i 2.2r

unrecognzed..word rdog in ~w r

wor _u di

TEMPORARYDICTIONARY

DFD Level 2.0 (ObjectMaker)

G.19

recognized word urecognized-word

C)-wordo t~)ain Dilay i~k -s eled
oword

word_ in

MAIN DICTIONARY wo d-ut word out

recognizedw MAIN DICTIONARY TEMPORARY DICTIONARY

to mp

0 word ot wordou - -

w z rd - n
t

MAIN DICTIONARY recogniz ,,,d

DFD Level 2.3 (ObjectMaker)

G.20

TdMM DICTIINARY M T NARY

I N 1,N

Iword in
I word qu

Entity Relationship Diagram (ObjectMaker)

G.21

Bibliography

1. Air Force Software Management Group (HQ USAF/SCW).
Air Force Software Management Plan, Version 1.0, 1990.

2. Anderson, E.E., "A Heuristic for Software Evaluation and
Selection." Software Practice and Experience, 19-8: 707-
717 (August 1989).

3. Bailor, Paul D. Class handout distributed in CSCE 595,
Software Generation and Maintenance. School of
Engineering, AFIT, Wright-Patterson AFB, OH, May 1991.

4. Baram, G. and G. Steinberg. "Selection Criteria for
Analysis and Design CASE Tools," ACM SIGSOFT Software
Engineering Notes, 14-6: 73-80 (October 1989).

5. Bisiani, R., F. Lecouat, and V. Ambriola. "A Tool to
Coordinate Tools," IEEE Software: 17-25 (November 1988).

6. Bruce, T. A., J. Fuller, and T. Moriarty, "So You Want a
Repository," Database Programming & Design: 60-69 (May
1989).

7. Burkhard, D. L., "Implementing CASE Tools," Journal of
Systems Management, 40-5: 20-28 (May 1989).

8. Buxton, J. N. and L. E. Druffel, "Requirements for an Ada
Programming Support Environment: Rationale for STONEMAN,"
Software Engineering Environments, edited by H. Hunke,
North Holland Publishing Company, 1981.

9. Charette, R. N., Software Engineering Environments:
Concepts and Technology. New York: Intertext Publications,
1986.

10. Chikofsky, E. J., "How to Lose Productivity With
Productivity Tools," Productivity: Progress, Prospects,
and Payoff: 1-4 (June 1988).

11. Christoph, B. A.,"A Practical Approach to the Selection of
Software Development Tools," Proceedings of the 18th
Hawaii International Conference on Systems Science. 524-
553. 1985.

12. Coallier, F., "A Strategy for CASE Tool Standard," IEEE
Ninth Annual International Phoenix Conference on
Computers and Communications. 380-384. 1990.

13. Danziger, M. R. and P. S. Haynes, "Managing the CASE
Environment," Journal of Systems Management, 40-5: 29-32
(May 1989).

BIB.1

14. Dart, S. A., R. J. Ellison, P. H. Feiler, and A. N.
Habermann, "Software Development Environments," IEEE
Computer: 18-28 (November 1987).

15. Department of Defense, Requirements for Ada Programming
Support Environments, STONEMAN, version 1.0: (February
1980).

16. Emrick, R. D., "Considering Computer Resource Consumption
in the Selection of Appropriate Development Software,"
EDP Performance Review, 13-11: 1-6 (November 1985).

17. Firth, R. et al. A Guide to the Classification and
Assessment of Software Engineering Tools, SEI Institute
Report 87-TR-IO, Carnegie-Mellon University, 1987.

18. Forte, G., "In Search of the Integrated CASE Environment,"
CASE OUTLOOK, 3-2: 5-12 (1989).

19. Frewin, G. D., "Metrics in Procurement - a Discussion
Paper," Measurement for Software Control and Assurance,
Elsevier Applied Science: 89-102 (1989).

20. Gibson, M., "A Guide to Selecting CASE Tools," Datamation:
65-66 (July 1988).

21. Gibson, M. L., C. A. Synder, and R. K. Rainer, Jr., "CASE:
Clarifying Common Misconceptions," Journal of Systems
Management, 40-5: 12-19 (May 1989).

22. Glickman, S. and M. Becker, "A Methodology for Evaluating
Software Tools," Conference on Software Tools. 190-199.
1985.

23. Glass, R. L., "Recommended: A Minimum Standard Toolset,"
ACM S1GSOFT Software Engineering Notes, 7-4: 3-11 (October
1982).

24. Hartrum, T. C., et. al., "Evaluating User Satisfaction of
an Interactive Computer Program," Proceedings of the IEEE
1989 National Aerospace & Electrical Conference, 2:
508-514 (1989).

25. Hatley, D. J., "Parallel System Development: A Reference
Model for CASE Tools," IEEE Ninth Annual International
Phoenix Conference on Computers and Communications. 364-
372. 1990.

26. Henderson, P. B. and D. Notkin, "Integrated Design and
Programming Environment," IEEE Computer: 12-16 (November
1987).

BIB.2

27. Hoffnagle, G. F. and W. E. Beregi, "Automating the
Software Development Process." IBM Systems Journal, 24-2:
102-120 (1985).

28. Houghton, R. C., Jr. and D. R. Wallace, "Characteristics
and Functions of Software Engineering Environments: An
Overview," ACM SIGSOFT Software Engineering Notes, 12-1:
64-84 (January 1987).

29. Humphrey, W. S., Managing the Software Process. United
States: Addison-Wesley Publishing Company Inc, 1990.

30. Humphrey, W. S. CASE Planning and the Software Process,
SEI Institute Report 89-TR-26, Carnegie-Mellon University,
1989.

31. Jones, C., "The Cost and Value of CASE," CASE OUTLOOK, 1-
4: 1-15 (1987).

32. Kemerer, C. F., "An Agenda For Research in the Managerial
Evaluation of Computer-Aided Software Engineering (CASE)
Tool Impacts," Proceedings of the 22nd Annual Hawaii
International Conference on Systems Science. 219-228.
January 1989.

33. Knight, R., "CASE Paybacks Perceived, if Not Exactly
Measured," SOFTWARE NEWS: 56-64 (February 1987).

34. Lawlis, P. K., Supporting Selection Decisions Based on
The Technical Evaluation of Ada Environments and Their
Components, PhD dissertation. Arizona State University,
August 1989.

35. Lehman, M. M. and W. M. Turski, "Essential properties of
IPSEs," ACM S1GSOFT Software Engineering Notes, 12-1: 52-
55 (January 1987).

36. Lemmp, P., "Development and Project Management Support
With the Integrated Software Engineering Environment,
EPOS," Software Engineering Environments, edited by I.
Sommerville, London: Peter Peregrinus Ltd, 1984.

37. Lempp, P., and R. Lauber, "What Productivity Increases to
Expect From a CASE Environment: Results of a User Survey,"
Productivity: Progress, Prospects. and P&yoff: 13-19 (June
1988).

38. Lyon, L., "CASE and the Database," Database Programming &
Design: 28-32 (May 1989).

39. Marmelstein, R. E., "Guidelines for Evaluation of Software
Engineering Tools," Software Engineering and its
Application to Avionics: 17.1-17.6 (1988).

BIB.3

40. Martin, J. and C. McClure, "Buying Software off the Rack,"
Harvard Business Review, 61-6: 32-52 (1988).

41. Martin, R., 'Evaluation of Current Software Costing
Tools," ACM SIGSOFT Software Engineering Notes, 13-3:
49-51 (July 1988).

42. Matthews, E. and G. Burns, "VADS APSE: An Integrated Ada
Programming Support Environment," SETAl Conference. April
1990.

43. McKay, C. W., "A Proposed Framework for the Tools and
Rules to Support the Life Cycle of the Space Station
Program," Proceedings of the IEEE Compass '87 Conference.
June 1987.

44. Mosley D., "Breaking Down the Barriers to CASE," American
Programmer, 2-9: 11-17 (1990).

45. Necco, C. R., N. W. Tsai, and K. W. Holgerson, "Current
Usage of CASE Software," Journal of Systems Management,
40-5: 6-11 (May 1989).

46. Norman, R. J. et al., "CASE Technology Transfer: A Case
Study of Unsucessful Change," Journal of Systems
Mana.4ement, 40-5: 33-41 (May 1989).

47. Norman, R. J. and J. F. Nunamaker, Jr., "CASE Productivity
Perceptions of Software Engineering Professional,"
Communications of the ACM, 32-9: 1102-1108 (September
1989).

48. Oestreich, H., "Classification, Evaluation and Selection
of Tools," COMPAS '84, Computer Applications, Software
Systems: 289-303 (1984).

49. Osterweil, L., "Software Environment Research: Directions
for the Next Five Years," IEEE Computer: 35-43 (1981).

50. Penedo, M. H., W. H. Riddle, "Guest Editors' Introduction
Software Engineering Environment Architectures," IEEE
Transactions on Software Engineering, 14-6: (June 1988).

51. Perry, D. E. and G. E. Kaiser, "Models of Software
Development Environments," Proceedings of the 10th
International Conference on Software Engineering. 60-68.
April 1988.

52. Peterson, G., J. Van Buren, S. Nilson. Requirements
Analysis and Design Tools: Interim Report, 2 November
1990.

BIB.4

53. Pressman, R. S., "Selecting and Justifying CASE Tools,"
CASE OUTLOOK, 1-6: 1-11 (1987).

54. Radding, P. L., "Achieving High Quality Systems: Making
CASE Work in Your Orginization," IEEE Ninth Annual
International Phoenix Conference on Computers and
Communications. 356-363. 1990.

55. Salyers, W., Sales Representative. Telephone interview.
Rational, Dayton OH, 30 July 1991.

56. Scheffer, P. A., A. H. Stone, III, W. E. Rzepka, "A CASE
Study of SREM," Computer: 47-54 (April 1985).

57. Sharon, D., "Smart CASE Shopping," IEEE Ninth Annual
International Phoenix Conference on Computers and
Communications. 376-379. 1990.

58. Smith, D., "Evaluating and Selecting CASE Tools,"
Software Engineering: 22-29 (September/October 1990).

59. Snizek, W., Sales RepresnLative. Telephone interview.
Rational, Dayton OH, 29 July 1991.

60. Stinson, W., "Views of Software Development Environments:
Automation of Engineering and Engineering of Automation,"
ACM SIGSOFT Software Engineering Notes, 14-6: 32-41
(October 1989).

61. Steubing, H. G., "A Software Engineering Environment (SEE)
for Weapon System Software," IEEE Transactions on
Software Engineering, SE-10-4: 384-397 (July 1984).

62. Troy, D. A., "An Evaluation of CASE Tools," Proceedings of
COMPSAC 87. 124-30. 1987.

63. Ward, P. T., "Embedded Behavior in Pattern Languages: A
Contribution to a Taxonomy of CASE Languages," The
Journal of Systems and Software, 9: 109-128 (1989).

64. Weiderman, N. H., A. N. Habermann, M. W. Borger, and M. H.
Klein, "A Methodology for Evaluating Environments," ACM
SIGPLAN Notices, 22-1: 199-207 (1987).

65. Wilson, D. M., "CASE: guidelines for success," Information
and Software Technology, 13-7: 346-350 (September 1989).

66. Winters, E., "Requirements Checklist for A System
Development Workstation," ACM SIGSOFT Software Engineering
Notes, 11-5: 57-62 (October 1986).

67. Zucconi, L., "Selecting a CASE Tool," ACM SIGSOFT Software
Engineering Notes, 14-2: 42-44 (April 1989).

BIB.5

Vita

Captain Jody L. Mattingly

and enlisted in the United States Marine

Corps in November of that year. After serving four years as

an aircraft avionics equipment technician, he enlisted in the

United States Air Force (USAF) as an aircraft radar

technician. In 1983 he was accepted under the Airman

Education and Commissioning Program and attended Wright State

University, from which he received the degree of Bachelor of

Science in Computer Science in March, 1986. Upon graduation

he received a regular commission through the USAF Officer

Training School where he was a distinguished graduate. He

then served as a system analyst as a member of the

Headquarters Strategic Communications Division at Offutt Air

Force Base, Omaha Nebraska. In May 1990, he received the

degree of Master of Science in Mathematics from Creighton

University. He entered the School of Engineering, Air Force

Institute of Technology that same month.

VIT. 1

,,:.2,T DOCUMENTATION PAGE f :- %,-

I December 199] Master's Thesis

-. ".-" A,;o L.L- Establishing a Methodology for Evaluating s. , 'u,.:

and Selecting Computer Aided Software Engineering Tools
for a Defined Software Engineering Environment at the Air
-Fr_ eInstitute of Technology Rehool of Rninggrin_
6. AUTHCR(S;

Jody L. Mattingly, Captain, USAF

.. ..7 :: .1GA:.41,' 7:j :14A.(S) AND -ACORESS(ES; 3.. C...:J ; A|Z TC'
1 R!;C.; ..UMS,10.€

Air Force Institute of Technology, WPAFB OR, 45433-6583 AFIT GCS/ENG/9]D-]3

.AG2.IC' R?: iT ,4UN1BER

. ' " c-" " ... S7ATE...V47 I. . DIS., u7TC', CC:E

Approved for public release: distribution unlimited

AZS.,TnAC.T 1.'4txjm,.m ZC0 wc:cs$

This study identified the software engineering environment (SEE) as it exists at

the Air Force Institute of Technology (AFIT) School of Engineering. It also

desribes the software process model employed and the software development methods
presented as part of the curriculum. Based on this information, criteria was
established to evaluate computer aided software engineering (CASE) tools being
considered for integration into the SEE. Each criterion was weighted to indicate
its importance when selecting CASE tools. The criteria were further used to
establish a methodology to be used to evaluate and select the CASE tools under
consideration as well as future tool candidates.

.4. 03j.:CT IEM'AS 15. NU,.IUER OF PAGES

CASE, Software Engineering 184

.7. -EClr' C'_A51-iF:CATICN 18. SECURTY CLASSIFICATION 19. SECUJI#TY C ASiFi zAT:0N 20. L1W7.7CN CF AUST~AC7
O T.S k-GE I' L .

Uklisiif ied Un assif led tUncX'ssified I L
it

